

# GEARHEADS RSSERIES

**Turntable Gearhead** 

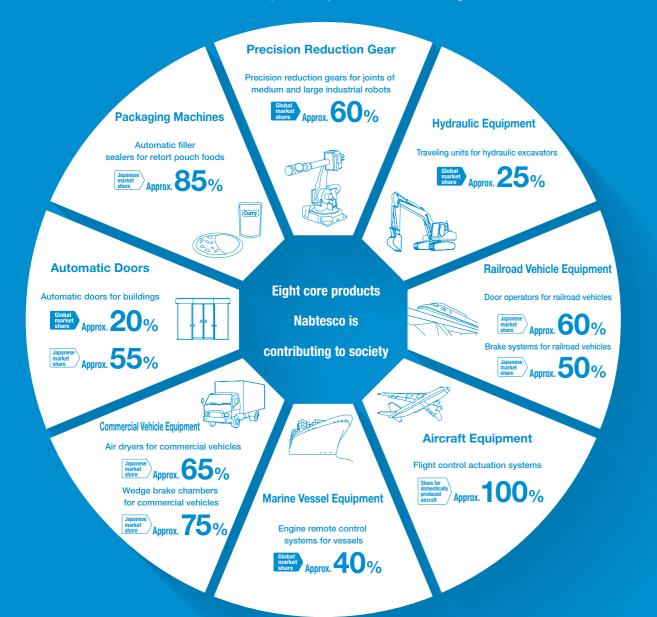




## Nabtesco®

moving it. stopping it.

Our innovative motion control technologies deliver safety, security and comfort in the transport and lifestyle fields.


Nabtesco Corporation was founded in 2003 through the merger of Nabco, Ltd. (est. 1925) and Teijin Seiki Co., Ltd. (est. 1944).

The move combined Nabco's proven fluid and pneumatic control technologies

with the cutting and assembly technologies developed by Teijin Seiki.

Since this time, we have been working to build on the technological and business foundation inherited from both companies, with motion control technologies as our core.

This focus has enabled us to expand our operations into a wide range of new fields.





Supporting a Wide Range of Cutting-Edge Industries around the World

## Precision Reduction Gear RV™

Nabtesco's Precision Reduction Gear RV<sup>™</sup> is key components used in the joints of industrial robots, enabling precise movement while maintaining optimum power.

Nabtesco has over 30 years of experience in this field and currently holds a major share of the global market. We are also actively working to expand applications for our gears into new fields, including machine tools as well as FPD and semiconductor production systems.









Precision Reduction Gear RV™

## Structure and Features

Precision reduction gear RV<sup>™</sup> is a reduction gear for precise motion control which uses a planocentric reduction gear mechanism.

This reduction gear design has advantages in rigidity and resistance against overload with a compact body due to a large number of simultaneously engaged gear teeth.

Furthermore, minimal backlash, rotational vibration and low inerita lead to rapid acceleration, smooth motion and accurate positioning.

We have a history of success in fields including industrial robots, machine tools, assembly equipment, conveyance equipment and more.

High accuracy Backlash (hysteresis loss) within 1 arc.min

**High rigidity** 

**High shock load resistance** 

High torque density High torque & Compact body

Wide range of reduction speed ratios

**Minimal vibration** 

#### 2-Stage Reduction Structure

Speed reduction by 1st stage (spur gears) & 2nd stage (pin & gear)



Speed ratio adjustable by changing 1st stage (spur) gear

• Wide range of speed ratios with the same outer diameter (low speed ratio high speed ratio)

More compact machine ligh speed ratio enables smaller servomotor

Input part (input gear) can be shortened.

• Inertia can make smaller.

Smaller motor selectable

Low speed rotation of the inner components (the RV gear)

Minimal vibration

Enhanced machine accuracy Reduced heat build-up

Pin & Gear Structure

Arrayed pins and RV gear, one tooth less than the pins, lead to reduction by mating.



The large number of simultaneous engagement of pins & teeth of the RV gears

- High Precision (backlash and lost motion (≤ 1 arc. min.)
- High shock load resistance (withstands 5 x rated torque)

**Enhanced machine accuracy** 

Enhanced machine durability

#### **Rolling Contact Structure**

2-stage reduction are all contacted with roller bearings except contact between pin halls in the case and the pins.



Low friction

Excellent start efficiency

Minimal backlash & lost motion

Energy saving (smaller servomotor) Enhanced machine accuracy

Low material degradation

Easy maintenance (no backlash adjustment)

#### Watch video



How RV works? Its structure and operating principle of

#### **Integrated Outer Load Support Bearings Structure**

Originally developed angular ball bearings



Support large capacity without additional support structures.

e.g. RS-900A Allowable thrust load: 88,200N Allowable moment: 44,100Nm

duced assembly man-hours

#### **Two-sided Support Structure**

Crankshafts supported by the shaft & the hold flange



High resistance against force

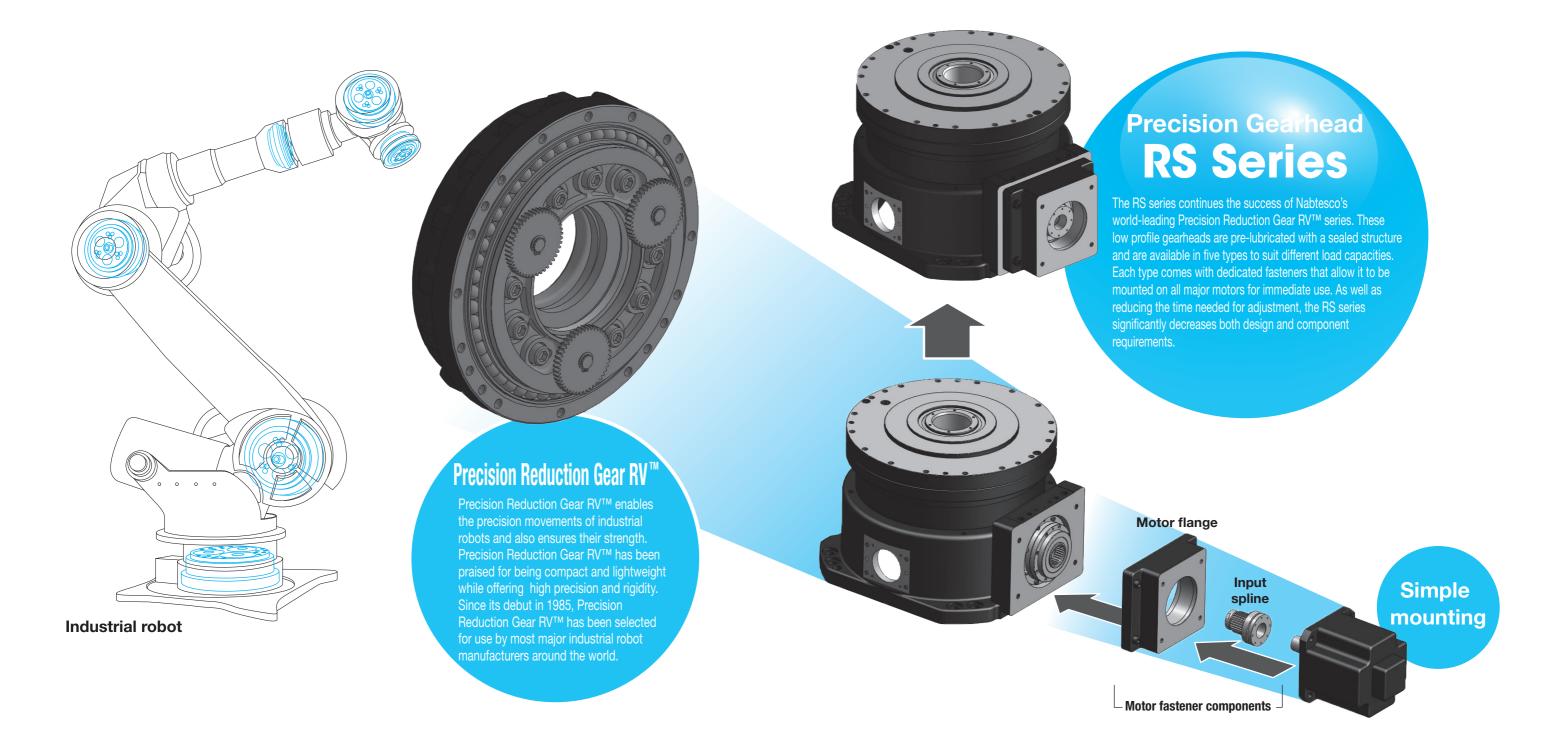
- High torsional rigidity
- Minimal vibration
- High shock load resistance (withstands 5 x rated torque)

nced machine durability

## **INDEX**

| What is the RS series 5-6                                 |
|-----------------------------------------------------------|
| Advantages of RS series 7-10                              |
| Main RS series applications 11                            |
| RS series model code · · · · 12                           |
| Rating table 13                                           |
| Introducing Optional parts · · · · 14                     |
| External dimensions, Reduction gear main unit · · · 15-22 |
| External dimensions, Input spline · · · 23-25             |
| External dimensions, Motor flange · · · 26-27             |
|                                                           |

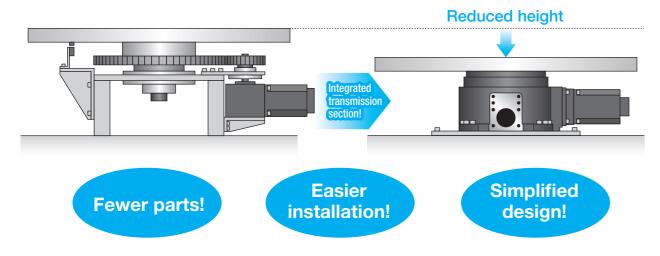
| Technical Information                                   |
|---------------------------------------------------------|
| Considering the use of the RS series 29                 |
| Glossary 30                                             |
| Product selection                                       |
| Product selection flowchart 31                          |
| Model code selection examples ···· 32-39                |
| Allowable moment diagram 40                             |
| Technical data                                          |
| No-load running torque 41                               |
| Calculation of tilt angle and torsion angle $\cdots$ 42 |
| Design points                                           |
| Remarks on designing 43-44                              |
| Appendix                                                |
| Inertia moment calculation formula ····· 45             |
| Troubleshooting checksheet46                            |
| Introduction of Our Website 47-48                       |


Warranty

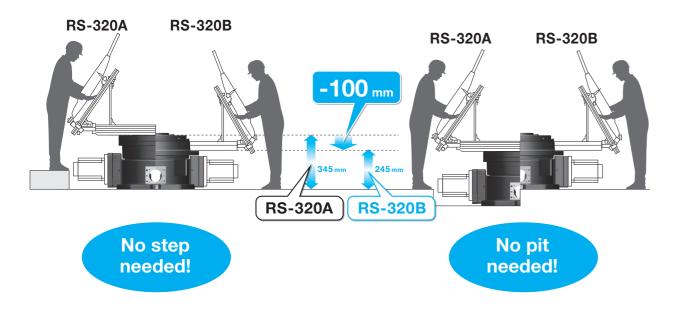




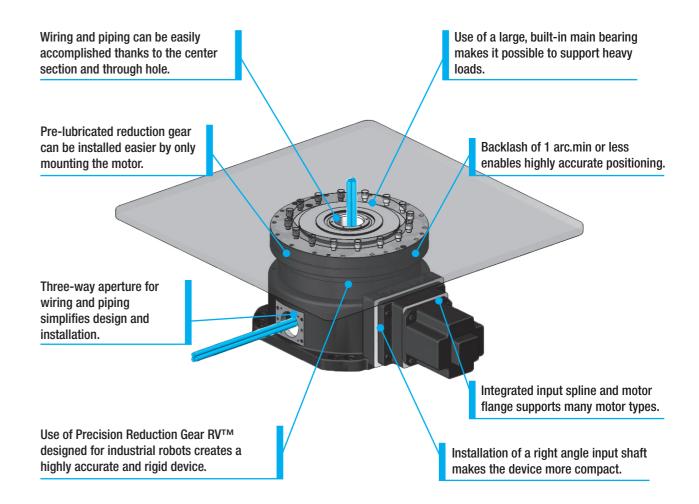
Back inside cover


# **RS Series Eliminates Turntable Problems!**





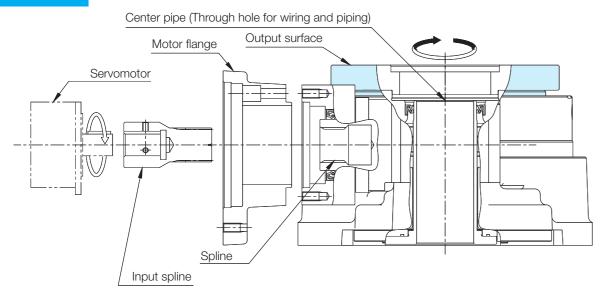

© 2015 Nabtesco Corporation. All rights reserved.


## More components increase assembly and adjustment times...

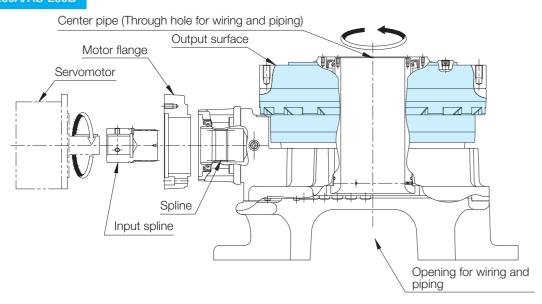


### Want lower equipment even further...



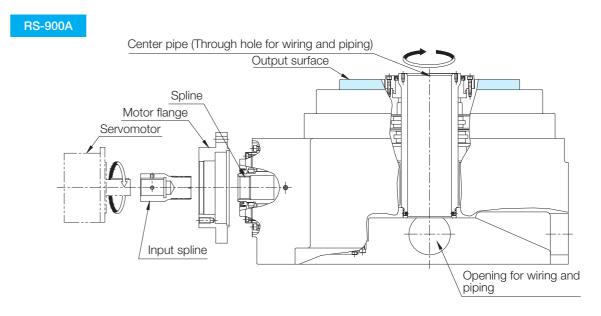

#### Individual features of RS series






#### Structure and rotation directions

#### RS-50A/RS-50B

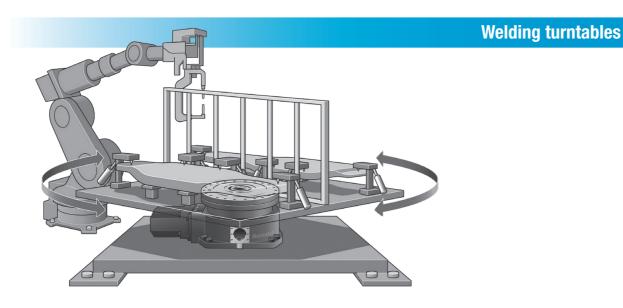



#### RS-260A/RS-260B

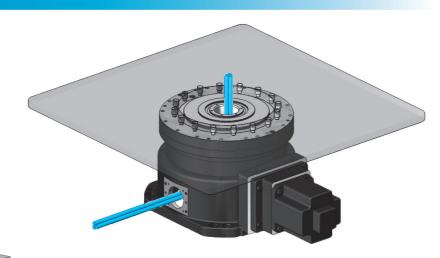


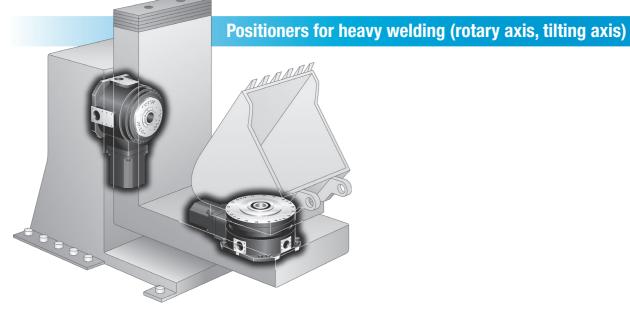
#### RS-320A/RS-320B/RS-400A



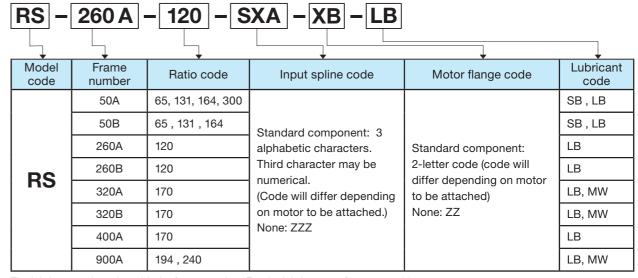



With the RS-260A/260B, RS-320A/320B/400A and RS-50A/50B, RS-900A, the rotation direction of the output shaft and servo motor differs.


Note: The areas indicate output rotation sections.





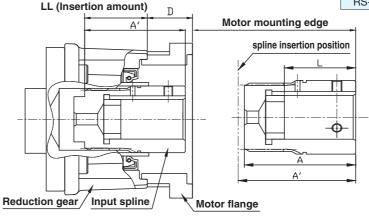

#### **Index tables**





#### **Product code**




The lubricant code varies with the frame number. For the lubricants, refer to page 44.

#### How to select model code

 Check the thickness of the motor flange according to the following equation:

Thickness of motor flange D = (A' + LR - L) - LL

| Model<br>Code | LL Input Spline Insertion Amount (mm) |
|---------------|---------------------------------------|
| RS-50A        | 40                                    |
| RS-50B        | 40                                    |
| RS-260A       | 57                                    |
| RS-260B       | 57                                    |
| RS-320A       |                                       |
| RS-320B       | 20.5                                  |
| RS-400A       |                                       |
| RS-900A       | 20.5                                  |



#### L (Input spline hole depth)

#### LR (Motor shaft length)

#### Note:

Calculate the LR of the 1/10 taper shaft with the dimension excluding the threaded portion at the shaft tip.

#### Note: Please ensure that there is a gap of no less

than 4mm between the input spline hole depth and the motor shaft length.

Note: Refer to page 23 to 25 regarding length A' and select a spline within the numerical range.

Note: If you consider using a gap of less than 4mm between the input spline hole depth and the motor shaft length, please contact our sales office for further assistance.

#### Combination of reduction gear and servomotor

- 1. The combinations that satisfy the following equation are recommended.

  (Rated torque of motor x 0.5) < {Rated torque of reduction gear/(Speed ratio x 0.8)} < (Rated torque of motor x 1.5)
- 2. Select the combinations that satisfy the following equation.

  (Maximum torque of motor) < {Momentary maximum torque of reduction gear/(Speed ratio x 0.8)}
- 3. Limitation must be imposed to the motor torque when the condition indicated in 1 and 2 above cannot be satisfied.
- 4. For more precise motor selection, the effective torque, load inertia moment, brake torque, regenerative ability, and so forth, must also be considered.





|                          | Model                                                         |                 |          |                                                  | RS-50A                                           | /RS-50B                                          |                                                    | RS-260A/<br>RS-260B   | RS-320A/<br>RS-320B   | RS-400A               | RS-9                  | 900A                  |  |
|--------------------------|---------------------------------------------------------------|-----------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
|                          | Speed ratio                                                   | R               |          | 65.4                                             | 130.8                                            | 163.5                                            | 300                                                | 120                   | 170                   | 170                   | 193.6                 | 240                   |  |
|                          | Ratio code                                                    |                 |          | 65                                               | 131                                              | 164                                              | 300                                                | 120                   | 170                   | 170                   | 194                   | 240                   |  |
|                          | Rated torque                                                  | To              | Nm       |                                                  | 49                                               | 90                                               |                                                    | 2,548                 | 3,136                 | 3,920                 | 8,8                   | 320                   |  |
|                          | Rated output speed                                            | No              | rpm      |                                                  | 1                                                | 5                                                |                                                    | 15                    | 15                    | 15                    | 1                     | 5                     |  |
|                          | Rated life                                                    | K               | h        |                                                  | 6,0                                              | 000                                              |                                                    | 6,000                 | 6,000                 | 6,000                 | 6,0                   | 000                   |  |
| Allo                     | wable acceleration/deceleration torque                        | Ts1             | Nm       |                                                  | 1,2                                              | 225                                              |                                                    | 6,370                 | 7,840                 | 9,800                 | 17,0                  | 640                   |  |
| Mo                       | omentary maximum allowable torque                             | Ts <sub>2</sub> | Nm       |                                                  | 2,4                                              | 150                                              |                                                    | 12,740                | 15,680                | 19,600                | 35,                   | 280                   |  |
|                          | Allowable output speed [Duty ratio: 100%] Note 2              | Ns0             | rpm      |                                                  | 6                                                | 60                                               |                                                    | 21.5                  | 20                    | 20                    | 1                     | 0                     |  |
|                          | Backlash                                                      |                 | arc.min. |                                                  | 1                                                | .5                                               |                                                    | 1.0                   | 1.0                   | 1.0                   | 1.                    | .0                    |  |
|                          | Lost motion                                                   |                 | arc.min. |                                                  | 1                                                | .5                                               |                                                    | 1.0                   | 1.0                   | 1.0                   | 1.0                   |                       |  |
| Sta                      | artup efficiency (Reference Value)                            |                 | %        |                                                  | 6                                                | 5                                                |                                                    | 75                    | 75                    | 70                    | 70                    |                       |  |
| aring                    | Allowable moment Note 4                                       | M01             | Nm       |                                                  | 1,7                                              | 764                                              |                                                    | 12,740                | 20,580                | 24,500                | 44,100                |                       |  |
| Sapacity of main bearing | Momentary maximum allowable moment                            | M02             | Nm       |                                                  | 3,5                                              | 528                                              |                                                    | 25,480                | 39,200                | 58,800                | 88,200                |                       |  |
| ityof                    | Maximum thrust load                                           | F <sub>0</sub>  | N        |                                                  | 14,                                              | 700                                              |                                                    | 24,500                | 49,000                | 72,000                | 88,200                |                       |  |
| Capa                     | Allowable radial load                                         | Wr              | N        |                                                  | 9,4                                              | 128                                              |                                                    | 39,900                | 54,676                | 66,252                | 101,754               |                       |  |
| Inp                      | Moment of inertia (I=GD²/4) out shaft conversion value Note 3 |                 | kgm²     | 8.98x10 <sup>-4</sup> /<br>8.92x10 <sup>-4</sup> | 4.61x10 <sup>-4</sup> /<br>4.60x10 <sup>-4</sup> | 4.02x10 <sup>-4</sup> /<br>4.01x10 <sup>-4</sup> | 3.896x10 <sup>-4</sup> /<br>3.896x10 <sup>-4</sup> | 5.76x10 <sup>-3</sup> | 3.40x10 <sup>-3</sup> | 4.05x10 <sup>-3</sup> | 1.16x10 <sup>-2</sup> | 1.14x10 <sup>-2</sup> |  |
| Rep                      | eated positioning accuracy Note 8 (ref.                       | value)          | arc.sec  | ±5                                               | ±5                                               | ±5                                               | ±5                                                 | ±5                    | ±5                    | ±5                    | ASK                   | ASK                   |  |
|                          | Mass                                                          |                 | kg       |                                                  | 45 /                                             | / 40                                             |                                                    | 165 / 129             | 290 / 315             | 290                   | 480                   |                       |  |

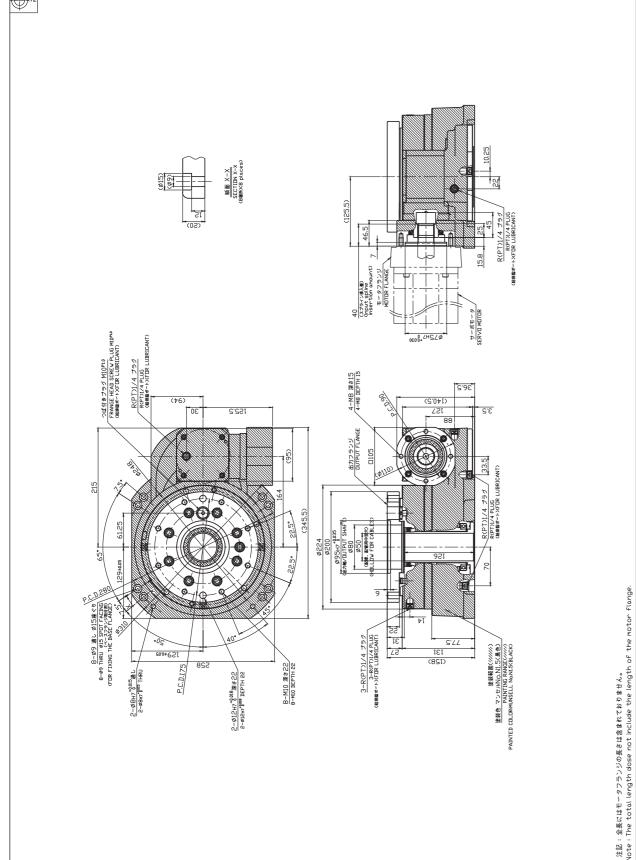
- Note: 1. The Rating Table shows the specification values of each individual reduction gear.
  - 2. The allowable output speed may be limited by heat depending on the operating rate. Make sure that the surface temperature of the reduction gear does not exceed 60°C during use.
  - 3. The inertia moment value is for the reduction gear. It does not include the inertia moment for the input gear.
  - 4. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p. 40).
  - 5. For the moment rigidity and torsional rigidity, refer to the calculation of tilt angle and the torsion angle (p. 42).
  - 6. The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to "Glossary" (p. 30) and "Product selection flowchart" (p. 31).
  - 7. The specifications above are based on Nabtesco evaluation methods; this product should only be used after confirming that it is appropriate for the operating conditions of your system.
  - 8. It represents the variation in the stopping position in one-way positioning.

#### The addition of an input shaft gearbox (option) to the RS Series realizes even higher reduction.

For details, consult our agent or nearest sales office

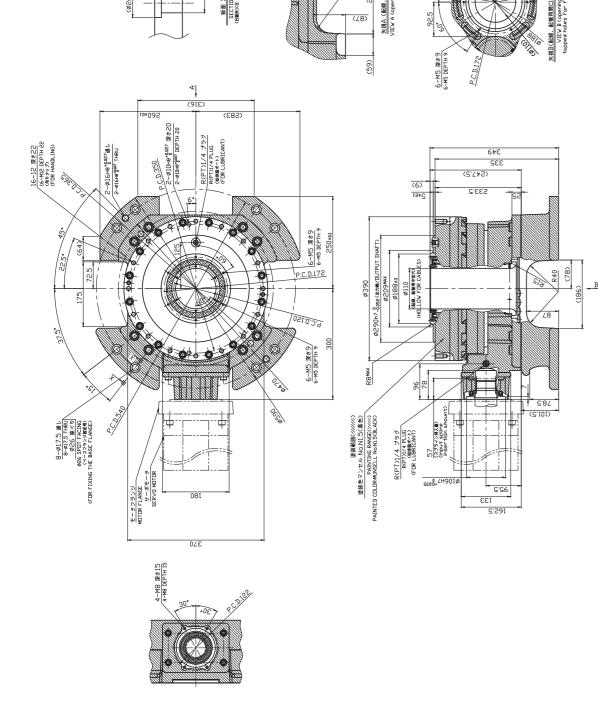


#### Table of ratios with input shaft gearbox mounted (example)

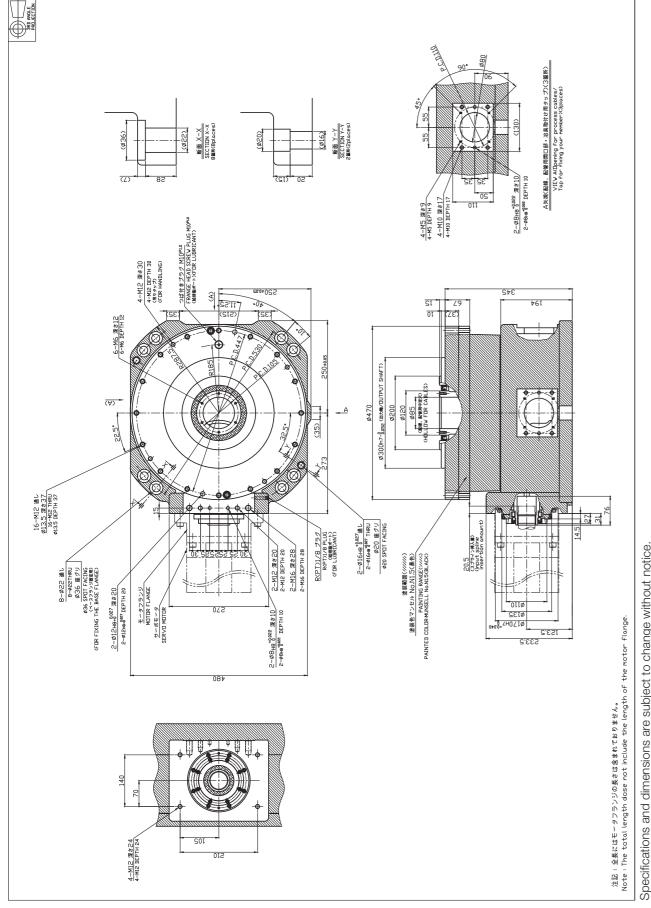

The table below shows example figures. Please don't hesitate to contact us when other ratios are required. (RS-50A/B are not supported)

|           | Standard ratio                | Total ratio with option |
|-----------|-------------------------------|-------------------------|
| RS-50A/B  | 65.4<br>130.8<br>163.5<br>300 |                         |
| RS-260A/B | 120                           | 180                     |
| RS-320A/B | 170                           | 255                     |
| RS-400A   | 170                           | 255                     |
| RS-900A   | 193.6<br>240                  | 290.4<br>360            |

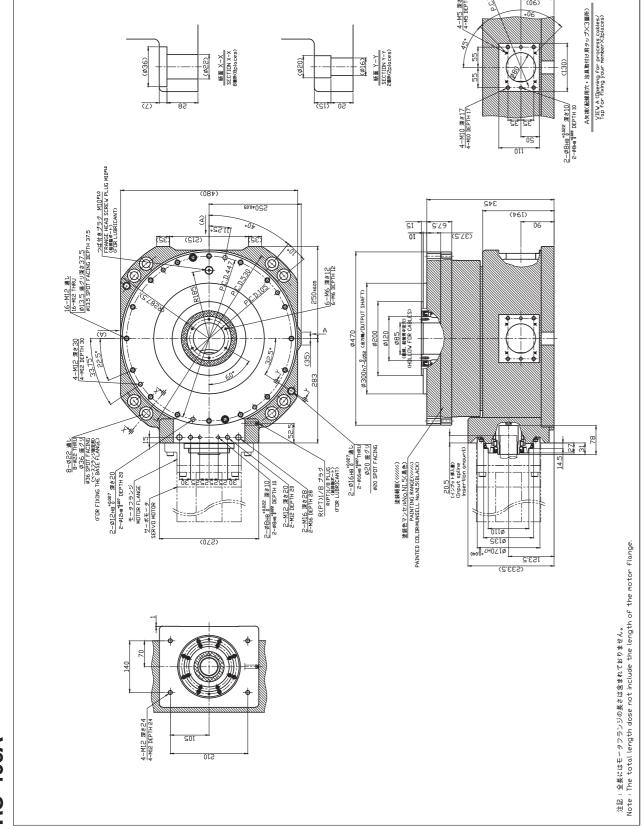
 ${}^{\star}\text{Note}$  that adding this option will reverse the output shaft rotation direction.

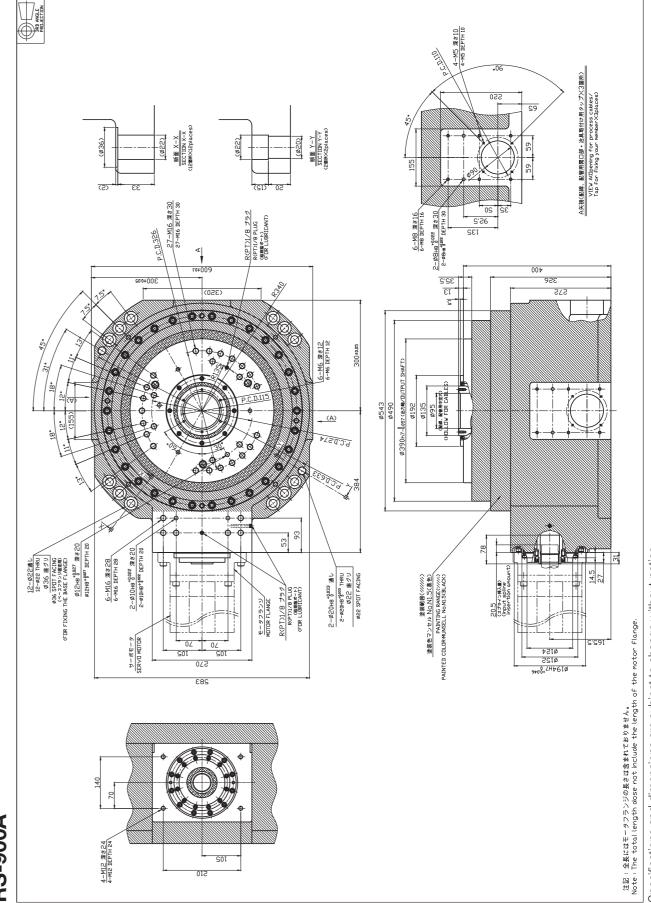




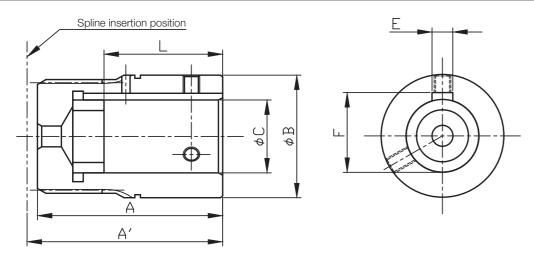

**RS-50B** 


 $\mathbb{RV}^{\circ}$ 




**RS-260B** 

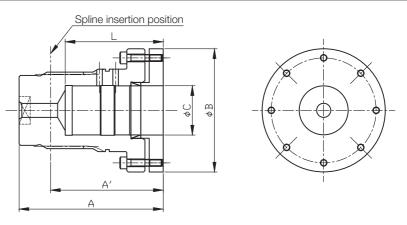



RS-320B





RS-900A


#### Straight shaft (with key)



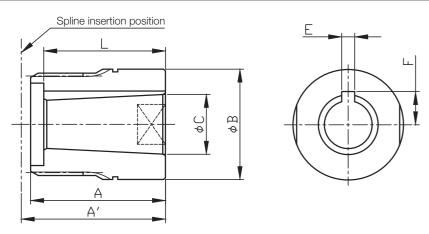
| Model              | Code | Order item |       |                |    | Input splir | ne dimensions    | (mm) |    |         |      | Inertia moment I<br>(I=GD²/4) |
|--------------------|------|------------|-------|----------------|----|-------------|------------------|------|----|---------|------|-------------------------------|
|                    |      | number     | А     | A'*            | øB | ,           | эC               | L    |    | E       | F    | Input shaft equivalent (kgm²) |
|                    | VXD  | 30WA140D*  | 77    | 74.5 to 79.5   | 40 | 19H7        | +0.021<br>0      | 37   | 6  | ±0.015  | 21.8 | 8.74×10 <sup>-5</sup>         |
|                    | VXE  | 30WA140E*  | 77    | 72.5 to 79.5   | 40 | 22H7        | +0.021<br>0      | 34   | 8  | ±0.018  | 25.3 | 8.77×10 <sup>-5</sup>         |
| RS-50A             | VXF  | 30WA140F*  | 83    | 79.5 to 85.5   | 40 | 24H7        | +0.021<br>0      | 43   | 8  | ±0.018  | 27.3 | 9.55×10 <sup>-5</sup>         |
| RS-50B             | VXH  | 30WA140H*  | 70    | 65.5 to 72.5   | 30 | 14          | +0.030<br>+0.012 | 22   | 5  | ±0.015  | 16.3 | 4.14×10 <sup>-5</sup>         |
|                    | VXJ  | 30WA140J*  | 68    | 63.5 to 70.5   | 30 | 17H7        | +0.018<br>0      | 28   | 5  | ±0.015  | 19.3 | 3.90×10 <sup>-5</sup>         |
|                    | VXP  | 30WA140P*  | 72    | 67.5 to 74.5   | 30 | 16H7        | +0.018<br>0      | 27   | 5  | ±0.015  | 18.3 | 4.19×10 <sup>-5</sup>         |
|                    | WXS  | 60WA140-*  | 87    | 85.5 to 87.5   | 59 | 32H7        | +0.025<br>0      | 45   | 10 | ±0.018  | 35.3 | 6.69×10 <sup>-4</sup>         |
| RS-260A            | WXB  | 60WA140B*  | 89    | 87.5 to 90     | 59 | 35          | +0.035<br>+0.010 | 72   | 10 | ±0.018  | 38.3 | 6.40×10 <sup>-4</sup>         |
| RS-260B            | WB2  | 60WA423B*  | 89    | 87.5 to 90     | 59 | 35          | +0.035<br>+0.010 | 57   | 10 | ±0.018  | 38.3 | 6.65×10 <sup>-4</sup>         |
|                    | WXC  | 60WA140C*  | 83    | 81.5 to 83.5   | 59 | 28H7        | +0.021<br>0      | 49   | 8  | ±0.018  | 31.3 | 6.48×10 <sup>-4</sup>         |
|                    | YXA  | 67WA422A*  | 68    | 64 to 72       | 45 | 28H7        | +0.021<br>0      | 52   | 8  | ±0.018  | 31.3 | 2.44×10 <sup>-4</sup>         |
|                    | YXD  | 67WA422D*  | 68    | 64 to 72       | 45 | 28H7        | +0.021<br>0      | 52   | 10 | ±0.018  | 31.3 | 2.44×10 <sup>-4</sup>         |
|                    | YXF  | 67WA140F*  | 145   | 150 to 159     | 56 | 38H7        | +0.025<br>0      | 66.5 | 10 | ±0.018  | 41.3 | 7.47×10 <sup>-4</sup>         |
|                    | YXG  | 67WA140G*  | 95    | 113.5 to 120.5 | 55 | 32H7        | +0.025<br>0      | 45   | 10 | ±0.018  | 35.3 | 5.01×10 <sup>-4</sup>         |
|                    | YXK  | 67WA140K*  | 109   | 126.5 to 133.5 | 60 | 35H7        | +0.025<br>0      | 55   | 10 | ±0.018  | 38.3 | 7.11×10 <sup>-4</sup>         |
| RS-320A<br>RS-320B | YXL  | 67WA140L*  | 81    | 98.5 to 105.5  | 55 | 32          | +0.043<br>+0.018 | 31   | 10 | ±0.018  | 35.3 | 4.17×10 <sup>-4</sup>         |
| RS-400A<br>RS-900A | YXM  | 67WA140M*  | 57    | 74.5 to 81.5   | 45 | 24          | +0.034<br>+0.013 | 23   | 8  | ±0.018  | 27.3 | 2.26×10 <sup>-4</sup>         |
|                    | YXN  | 67WA140N*  | 109   | 126.5 to 133.5 | 60 | 35          | +0.035<br>+0.010 | 55   | 10 | ±0.018  | 38.3 | 7.11×10 <sup>-4</sup>         |
|                    | YXP  | 67WA140P*  | 89    | 106.5 to 113.5 | 45 | 24H7        | +0.021<br>0      | 55   | 8  | ±0.018  | 27.3 | 3.18×10 <sup>-4</sup>         |
|                    | YXQ  | 67WA140Q*  | 144.5 | 162 to 169     | 60 | 35H7        | +0.025<br>0      | 55   | 10 | ±0.018  | 38.3 | 9.38×10 <sup>-4</sup>         |
|                    | YXR  | 67WA140R*  | 125   | 142.5 to 149.5 | 60 | 35          | +0.035<br>+0.010 | 70   | 10 | ±0.018  | 38.3 | 8.43×10 <sup>-4</sup>         |
|                    | YS2  | 67WA140S*  | 142   | 159.5 to 166.5 | 60 | 42H7        | +0.025<br>0      | 80   | 12 | ±0.0215 | 45.3 | 8.89×10 <sup>-4</sup>         |

<sup>\*</sup> Ensure that length A' of the spline insertion position is within the range indicated in the table above.

#### Straight shaft (without key)

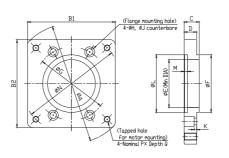


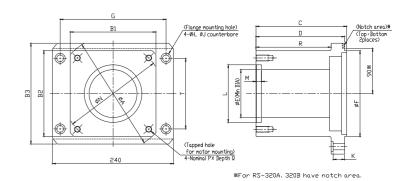
| Model              | Code Order item Input spline dimensions (mm) |           |     |                |     |             |                  |    |                               | Transmission torque |
|--------------------|----------------------------------------------|-----------|-----|----------------|-----|-------------|------------------|----|-------------------------------|---------------------|
|                    |                                              | number    | А   | A'*            | øB  |             | øС               | L  | Input shaft equivalent (kgm²) | Nm                  |
|                    | VXA                                          | 30WA421A* | 79  | 72.5 to 81.5   | 68  | 24          | +0.021<br>0      | 39 | 4.11×10 <sup>-4</sup>         | 77.8                |
|                    | VXB                                          | 30WA421B* | 68  | 63.5 to 70.5   | 63  | 19          | +0.021<br>0      | 45 | 2.40×10 <sup>-4</sup>         | 52.4                |
| RS-50A             | VXC                                          | 30WA421C* | 77  | 72.5 to 79.5   | 68  | 22          | +0.021<br>0      | 45 | 4.09×10 <sup>-4</sup>         | 68.7                |
| RS-50B             | VXK                                          | 30WA421K* | 77  | 70.5 to 79.5   | 63  | 24          | +0.021<br>0      | 37 | 2.40×10 <sup>-4</sup>         | 77.8                |
|                    | VXQ                                          | 30WA421Q* | 73  | 66.5 to 75.5   | 63  | 19          | +0.021<br>0      | 36 | 2.48×10 <sup>-4</sup>         | 52.4                |
|                    | VQ2                                          | 30WA431Q* | 73  | 66.5 to 75.5   | 63  | 19          | +0.021<br>0      | 30 | 2.48×10 <sup>-4</sup>         | 52.4                |
| RS-260A            | WXD                                          | 60WA421D* | 103 | 86.5 to 88.5   | 88  | 35          | +0.035<br>+0.010 | 70 | 1.52×10 <sup>-3</sup>         | 106.5               |
| RS-260B            | WD2                                          | 60WA431D* | 103 | 86.5 to 88.5   | 88  | 35          | +0.035<br>+0.010 | 55 | 1.53×10 <sup>-3</sup>         | 106.5               |
|                    | YXB                                          | 67WA421B* | 86  | 86 to 92       | 75  | 35          | +0.035<br>+0.010 | 73 | 7.34×10 <sup>-4</sup>         | 106.5               |
| RS-320A<br>RS-320B | YXC                                          | 67WA421C* | 82  | 84.5 to 87     | 75  | 32H7        | +0.025<br>0      | 33 | 7.55×10 <sup>-4</sup>         | 170.8               |
| RS-400A<br>RS-900A | YE2                                          | 67WA421E* | 86  | 86 to 92       | 75  | 35          | +0.035<br>+0.010 | 58 | 7.48×10 <sup>-4</sup>         | 106.5               |
|                    | YXH                                          | 67WA421H* | 144 | 140.5 to 149.5 | 77  | 42H7 +0.025 |                  | 62 | 9.73×10 <sup>-4</sup>         | 277.3               |
| RS-900A            | ZS2                                          | 96WA421-* | 149 | 143.5 to 152.5 | 110 | 55H7        | +0.030<br>0      | 53 | 3.83×10 <sup>-3</sup>         | 657                 |


 $<sup>^{\</sup>star}$  Ensure that length A' of the spline insertion position is within the range indicated in the table above.






© 2015 Nabtesco Corporation. All rights reserved.


#### 1/10 tapered shaft



| Model              | Code Order item Input spline dimensions (mm) |           |    |              |    |    |            |    |   |                  | Inertia moment I<br>(I=GD²/4) |                               |
|--------------------|----------------------------------------------|-----------|----|--------------|----|----|------------|----|---|------------------|-------------------------------|-------------------------------|
|                    |                                              | number    | А  | A'*          | øΒ |    | øС         | L  |   | E                | F                             | Input shaft equivalent (kgm²) |
| RS-50A             | VXL                                          | 30WA422L* | 64 | 59.5 to 66.5 | 30 | 14 | +0.10<br>0 | 18 | 4 | +0.040<br>+0.010 | 8.75                          | 3.75×10 <sup>-5</sup>         |
| RS-50B             | VXM                                          | 30WA422M* | 62 | 57.5 to 64.5 | 30 | 16 | +0.10<br>0 | 28 | 5 | +0.040<br>+0.010 | 9.5                           | 3.57×10 <sup>-5</sup>         |
| RS-260A            | WXA                                          | 60WA140A* | 72 | 73.5 to 75.5 | 59 | 32 | +0.10<br>0 | 65 | 7 | +0.049<br>+0.013 | 17.75                         | 5.08×10 <sup>-4</sup>         |
| RS-260B            | WXE                                          | 60WA140E* | 89 | 87.5 to 90   | 59 | 35 | +0.10<br>0 | 57 | 6 | +0.2<br>+0.1     | 18.85                         | 6.53×10 <sup>-4</sup>         |
| RS-320A<br>RS-320B | YXS                                          | 67WA140-* | 60 | 54 to 69.5   | 50 | 32 | +0.10<br>0 | 60 | 7 | +0.08<br>+0.043  | 17.75                         | 2.06×10 <sup>-4</sup>         |
| RS-400A<br>RS-900A | YXE                                          | 67WA140E* | 81 | 81.5 to 87.5 | 50 | 35 | +0.10<br>0 | 55 | 6 | +0.040<br>+0.010 | 18.55                         | 2.74×10 <sup>-4</sup>         |

<sup>\*</sup> Ensure that length A' of the spline insertion position is within the range indicated in the table above.

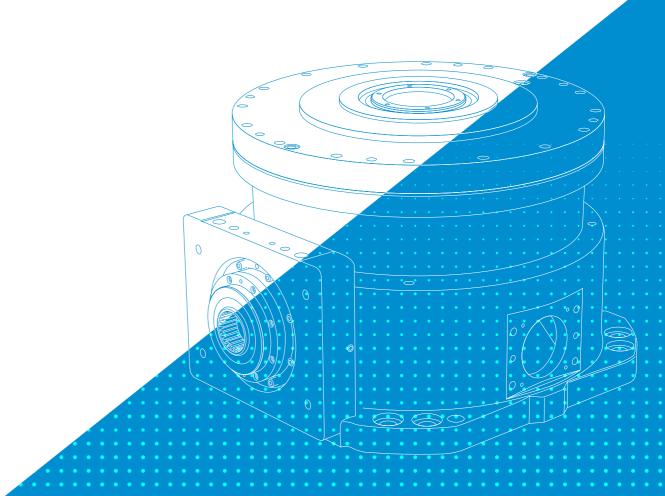




For RS-50A/B, 260A/260B

For RS-320A/320B, 400A, 900A

| Model            | Code     | Order item               |            |              |    | mension |          |          |          |          | eduction g  |                  | ınting di | imensio | ns (mm) |    | N          | Notor mour                 | nting din | nension |           |          |
|------------------|----------|--------------------------|------------|--------------|----|---------|----------|----------|----------|----------|-------------|------------------|-----------|---------|---------|----|------------|----------------------------|-----------|---------|-----------|----------|
| odoi             | 0000     | number                   | øΑ         | B1 B2        | B3 | R       | С        | D        | øE       | 0        | F           | G                | Т         | øΗ      | øJ      | K  | e          | L . 0.000                  | М         | øN      | Р         | Q        |
| F                | CA       | 35PA203CA*               | 111.4      | ø111.4       |    |         | 41       | 36       | 69       |          |             |                  |           |         |         |    | 50         | +0.036<br>+0.011<br>+0.037 | 3.5       | 70      | M5        | 9        |
| -                | CB       | 35PA203CB*               | 108        | ø108         |    |         | 41       | 36       | 69       |          |             |                  |           |         |         |    | 70         | +0.037                     | 5.5       | 90      | M5        | 9        |
| -                | CC       | 35PA203CC*               | 108        | ø108         |    | ļ       | 41       | 36       | 69       |          |             |                  |           |         |         |    | 70         | +0.012                     | 5.5       | 90      | M6        | 11       |
| -                | CD       | 35PA203CD*               | 144        | □129<br>400  |    |         | 43       | 38       | 69       |          |             |                  |           |         |         |    | 80         | +0.012                     | 6         | 100     | M6        | 11       |
| F                | CE       | 35PA203CE*<br>35PA203CF* | 144        | □129<br>□129 |    |         | 43       | 38       | 69       | <u> </u> |             |                  |           |         |         |    | 95<br>95   | +0.013                     | 6         | 115     | M6<br>M8  | 11       |
| F                | CG       | 35PA203CG*               | 176        | □129<br>□130 |    |         | 45       | 40       | 69       |          |             |                  |           |         |         |    | 110        | +0.013                     | 7         | 135     | M8        | 15       |
| F                | СН       | 35PA203CH*               | 176        | □130         |    |         | 45       | 40       | 69       |          |             |                  |           |         |         |    | 110        | +0.013                     | 11        | 145     | M8        | 15       |
| ŀ                | CJ       | 35PA203CJ*               | 176        | □130         |    |         | 60       | 55       | 69       |          |             |                  |           |         |         |    | 110        | +0.013                     | 7         | 145     | M8        | 15       |
| RS-50A<br>RS-50B | CK       | 35PA203CK*               | 232        | □176         | -  | -       | 45       | 40       | 69       | 75h7     | -0.030      | 90               | -         | 9       | 14      | 22 | 114.3      | +0.013<br>+0.038<br>+0.013 | 5         | 200     | M12       | 22       |
|                  | CL       | 35PA203CL*               | 232        | □176         |    |         | 45       | 40       | 69       |          |             |                  |           |         |         |    | 115        | +0.013<br>+0.038<br>+0.013 | 6         | 165     | M8        | 15       |
| Ī                | СМ       | 35PA203CM*               | 232        |              |    |         |          |          |          |          | 130         | +0.039<br>+0.014 | 6         | 165     | M10     | 18 |            |                            |           |         |           |          |
|                  | CN       | 35PA203CN*               | 295        | □220         |    |         | 45       | 40       | 69       |          |             |                  |           |         |         |    | 200        | +0.040<br>+0.015           | 6         | 235     | M12       | 22       |
|                  | СР       | 35PA203CP*               | 176        | □130         |    |         | 50       | 45       | 69       |          |             |                  |           |         |         |    | 80         | +0.037<br>+0.012           | 6         | 100     | M6        | 11       |
|                  | CQ       | 35PA203CQ*               | 144        | □129         |    |         | 48       | 43       | 69       |          |             |                  |           |         |         |    | 95         | +0.038<br>+0.013           | 6         | 115     | M8        | 15       |
|                  | CR       | 35PA203CR*               | 170        | □130         |    |         | 53       | 48       | 69       |          |             |                  |           |         |         |    | 110        | +0.038<br>+0.013           | 11        | 145     | M8        | 15       |
|                  | СТ       | 35PA203CT*               | 176        | □130         |    |         | 45       | 40       | 69       |          |             |                  |           |         |         |    | 110        | +0.038<br>+0.013           | 7         | 130     | M8        | 15       |
|                  | CU       | 35PA203CU*               | 111.4      | ø111.4       |    |         | 41       | 36       | 67       |          |             |                  |           |         |         |    | 60         | +0.037<br>+0.012           | 3.5       | 75      | M5        | 9        |
| -                | GA       | 35PA203GA*               | 144        | □129         |    |         | 43       | 38       | 96       |          |             |                  |           |         |         |    | 95         | +0.038                     | 7         | 115     | M8        | 15       |
| -                | GB       | 35PA203GB*               | 176        | □130         |    |         | 45       | 40       | 96       |          |             |                  |           |         |         |    | 110        | +0.038                     | 7         | 135     | M8        | 15       |
| F                | GC       | 35PA203GC*               | 176        | □130         |    |         | 45       | 40       | 96       |          |             |                  |           |         |         |    | 110        | +0.038<br>+0.013<br>+0.038 | 7         | 145     | M8        | 15       |
|                  | GD       | 35PA203GD*               | 233        | □176         |    |         | 45       | 40       | 96       |          |             |                  |           |         |         |    | 114.3      | +0.013                     | 5         | 200     | M12       | 22       |
| F                | GE       | 35PA203GE*               | 233        | □176<br>□220 |    |         | 45       | 40       | 96       |          |             |                  |           |         |         |    | 130        | +0.014                     | 6         | 165     | M10       | 18       |
| RS-260A L        | GF<br>GG | 35PA203GF*<br>35PA203GG* | 295<br>170 | □220<br>□130 | -  | -       | 45<br>55 | 40<br>50 | 96<br>96 | 106h7    | 0<br>-0.035 | 122              | -         | 9       | 14      | 22 | 200<br>110 | +0.015<br>+0.038           | 7         | 235     | M12<br>M8 | 22<br>15 |
| -                | GH       | 35PA203GH*               | 232        | □176         |    |         | 55       | 50       | 96       |          |             |                  |           |         |         |    | 114.3      | +0.013                     | 5         | 200     | M12       | 22       |
| F                | GJ       | 35PA203GJ*               | 170        | □130         |    |         | 50       | 45       | 96       |          |             |                  |           |         |         |    | 110        | +0.013<br>+0.038<br>+0.013 | 7         | 145     | M8        | 15       |
| F                | GK       | 35PA203GK*               | 175        | □130         |    |         | 45       | 40       | 96       | _        |             |                  |           |         |         |    | 110        | +0.013<br>+0.038<br>+0.013 | 7         | 130     | M8        | 15       |
|                  | GL       | 35PA203GL*               |            | □129         |    |         | 43       | 38       | 80       |          |             |                  |           |         |         |    | 80         | +0.013<br>+0.037<br>+0.012 | 6         | 100     | M6        | 11       |
|                  |          |                          |            | □220         |    |         | 45       | 40       | 96       |          |             |                  |           |         |         |    | 180        | +0.054                     | 6         | 215     | M12       | 22       |


© 2015 Nabtesco Corporation. All rights reserved.

### Motor flange External dimensions

| Model              | Code | Order item | Flange outer dimensions (mm) |               |    |     |      |                 |       |       | Re     | eduction g  | ear mou | unting di | mensio      | ns (mm) |      | Motor mounting dimensions (mm) |                  |    |     |     |    |
|--------------------|------|------------|------------------------------|---------------|----|-----|------|-----------------|-------|-------|--------|-------------|---------|-----------|-------------|---------|------|--------------------------------|------------------|----|-----|-----|----|
| Model              | Code | number     | øΑ                           | B1            | B2 | B3  | R    | С               | D     | øΕ    | Ø      | F           | G       | T         | øΗ          | øJ      | K    | Ø                              | L                | М  | øN  | Р   | Q  |
|                    | YS   | 67WA203-*  | 247                          | □1            | 74 | 174 | 36.5 | 65.5            | 61.5  | 114.3 |        |             |         |           |             | -       | 25   | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | YA   | 67WA203A*  | 238                          | □1            | 74 | 174 | 44.5 | 75.5            | 71.5  | 114.3 |        |             |         |           |             |         | 25   | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | YB   | 67WA203B*  | 318                          | 240           | 2  | 20  | -    | 75.5            | 71.5  | 148   |        |             |         |           |             |         | 25.5 | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
|                    | YC   | 67WA203C*  | 318                          | 240           | 2: | 20  | -    | 85.5            | 81.5  | 148   |        |             |         |           |             |         | 25.5 | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
|                    | YD   | 67WA203D*  | 245                          | <sub>-1</sub> | 80 | 200 | 149  | 180             | 176   | 114.3 |        |             |         |           |             | 20      |      | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
| RS-320A<br>RS-320B | YE   | 67WA203E*  | 318                          | 240           | 2  | 20  | -    | 124             | 120   | 148   | 170h7  | 0           | 210     | 140       | 13          |         |      | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
| RS-400A            | YG   | 67WA203G*  | 318                          | 240           | 2  | 20  | -    | 80              | 76    | 148   | 170117 | -0.040      | 210     | 140       |             |         |      | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
|                    | ΥH   | 67WA203H*  | 306                          | 240           | 21 | 00  | -    | - 110 106 114.3 |       |       |        |             | 25      | 114.3H7   | +0.035<br>0 | 10      | 200  | M12                            | 24               |    |     |     |    |
|                    | YJ   | 67WA203J*  | 310                          | ø1            | 80 | 220 | 75   | 104             | 100   | 110   |        |             |         |           |             | -       | 25   | 110H7                          | +0.035<br>0      | 10 | 145 | M8  | 16 |
|                    | YK   | 67WA203K*  | 306                          | 240           | 21 | 00  | -    | 139             | 135   | 114.3 |        |             |         |           |             |         |      | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | YL   | 67WA203L*  | 245                          | □1            | 80 | 200 | 134  | 165             | 161   | 114.3 |        |             |         |           |             | 20      |      | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | YM   | 67WA203M*  | 198                          | <sub>-1</sub> | 45 | 200 | 5    | 79.5            | 75.5  | 130   |        |             |         |           | 13.5        |         |      | 130                            | +0.054<br>+0.014 | 10 | 165 | M10 | 18 |
|                    | ZA   | 96WA203A*  | 238                          | □1            | 74 | 200 | 34.5 | 65.5            | 61.5  | 114.3 |        |             |         |           |             |         |      | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | ZB   | 96WA203B*  | 247                          | <sub>-1</sub> | 80 | 200 | 134  | 165             | 161   | 114.3 |        |             |         |           |             |         | 25   | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | ZC   | 96WA203C*  | 259                          | 176           | 21 | 00  | 48.5 | 79.5            | 75.5  | 114.3 |        |             |         |           | 13          |         |      | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
| RS-900A            | ZD   | 96WA203D*  | 313                          | 240           | 2  | 13  | -    | 80.5            | 76.5  | 180   | 194h7  | 0<br>-0.046 | 210     | 140       |             | 20      | 25.5 | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
|                    | ZE   | 96WA203E*  | 238                          | <sub>-1</sub> | 74 | 200 | 79.5 | 110.5           | 106.5 | 114.3 |        |             |         |           |             |         | 25   | 114.3H7                        | +0.035<br>0      | 10 | 200 | M12 | 24 |
|                    | ZF   | 96WA203F*  | 318                          | 240           | 2  | 20  | -    | 85.5            | 81.5  | 175   |        |             |         |           | 13.5        | ]       | 25.5 | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |
|                    | ZH   | 96WA203H*  | 307                          | 240           | 2  | 13  | -    | 124.5           | 120.5 | 180   |        |             |         |           | 10.0        |         | 25   | 200H7                          | +0.046<br>0      | 10 | 235 | M12 | 24 |

## **Technical Information**

- Considering the use of the RS series
- Glossary
- Product selection
- Product selection flowchart
- Model code selection examples
- Allowable moment diagram
- Technical data
- No-load running torque
- Calculation of tilt angle and torsion angle
- Design points
- Reduction gear installation components
- Appendix
- Inertia moment calculation formula
- Troubleshooting checksheet





#### Glossary

This product features high precision and high rigidity, however, it is necessary to strictly comply with various restrictions and make considerations to maximize the product's features. Please read this technical document thoroughly and select and adopt an appropriate model based on the actual operating environment, method, and conditions at your facility.

#### **Export**

 When this product is exported from Japan, it may be subject to the export regulations provided in the "Foreign Exchange Order and Export Trade Control Order". Be sure to take sufficient precautions and perform the required export procedures in advance if the final operating party is related to the military or the product is to be used in the manufacture of weapons, etc.

#### **Application**

• If failure or malfunction of the product may directly endanger human life or if it is used in units which may injure the human body (atomic facilities, space equipment, medical equipment, safety units, etc.), examination of individual situations is required. Contact our agent or nearest business office in such a case.

#### Safety measures

• Although this product has been manufactured under strict quality control, a mistake in operation or misuse can result in breakdown or damage, or an accident resulting in injury or death. Be sure to take all appropriate safety measures, such as the installation of independent safeguards.

#### Product specifications indicated in this catalog

• The specifications indicated in this catalog are based on Nabtesco evaluation methods. This product should only be used after confirming that it is appropriate for the operating conditions of your system.

#### **Operating environment**

Use the reduction gear under the following environment:

- $\cdot$  Location where the ambient temperature is within the range from -10°C to 40°C.
- · Location where the humidity is less than 85% and no condensation occurs.
- · Location where the altitude is less than 1000 m.
- · Well-ventilated location

Do not install the reduction gear at the following locations.

- · Locations where a lot of dust is collected.
- Outdoor areas that are directly affected by wind and rain
- Locations near to areas that contains combustible, explosive, or corrosive gases and flammable materials.
- Locations that are heated due to heat transfer and radiation from peripherals and direct sun.
- Locations where the performance of the motor can be affected by magnetic fields or vibration.
- Note 1: If the required operating environment cannot be established/met, contact us in advance.
  - 2: When using the reduction gear under special conditions (clean room, equipment for food, concentrated alkali, high-pressure steam, etc.), contact our agent or nearest business office in advance.

#### Maintenance

• The standard replacement time for lubricant is 20,000 hours. However, when operation involves a reduction gear surface temperature above 40°C, the state of degradation of the lubricant should be checked in advance of that and the grease replaced earlier as necessary.

#### Reduction gear temperature

 When the reduction gear is used under high load and at a high duty ratio, it may overheat and the surface temperature may exceed the allowable temperature. Be aware of conditions so that the surface temperature of the reduction gear does not exceed 60°C while it is in operation. There is a possibility of damage (to the product) if the surface temperature exceeds 60°C.

#### Reduction gear output rotation angle

• When the range of the rotation angle is small (10 degrees or less), the service life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Note: Contact us in case the rotation angle is 10 degrees or less.

#### **Manuals**

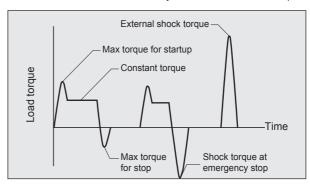
Safety information and detail product instructions are indicated in the operation manual.
 The operation manual can be downloaded from the following website.

#### https://precision.nabtesco.com/

#### Rated service life

The lifetime resulting from the operation with the rated torque and the rated output speed is referred to as the "rated service life"

#### Allowable acceleration/deceleration torque


When the machine starts or stops, the load torque to be applied to the reduction gear is larger than the constant-speed load torque due to the effect of the inertia torque of the rotating part. In such a situation, the allowable torque during acceleration/deceleration is referred to as "allowable acceleration/deceleration torque".

**Note:** Be careful that the load torque, which is applied at startup and stop, does not exceed the allowable acceleration/deceleration torque.

#### Momentary maximum allowable torque

A large torque may be applied to the reduction gear due to execution of emergency stop or by an external shock. In such a situation, the allowable value of the momentary applied torque is referred to as "momentary maximum allowable torque".

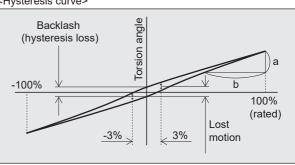
**Note:** Be careful that the momentary excessive torque does not exceed the momentary maximum allowable torque.



#### Allowable output speed

The allowable value for the reduction gear's output speed during operation without a load is referred to as the "allowable output speed".

Notes: Depending on the conditions of use (duty ratio, load, ambient temperature), the reduction gear temperature may exceed 60°C even when the speed is under the allowable output speed. In such a case, either take cooling measures or use the reduction gear at a speed that keeps the surface temperature at 60°C or lower.


#### Duty ratio

The duty ratio is defined as the ratio of the sum total time of acceleration, constant speed, and deceleration to the cycle time of the reduction gear.

#### Torsional rigidity, lost motion, Backlash (hysteresis loss)

Applying torque to the reduction gear output shaft with the input shaft fixed generates torsion in the reduction gear. The shifting torsion amount (torsion angle) is drawn with a hysteresis curve, from which the spring constant, lost motion, and backlash (hysteresis loss) can be derived. The spring constant is the ratio of the torque and torsion angle from 1/2 rated torque to rated torque (b/a). Lost motion is the torsion angle in the low-load area (±3% of rated torque). Backlash (hysteresis loss) is the torsion angle at zero load torque.

<Hysteresis curve>



#### Startup efficiency

The efficiency of the moment when the reduction gear starts up is referred to as "startup efficiency".

#### No-load running torque (input shaft)

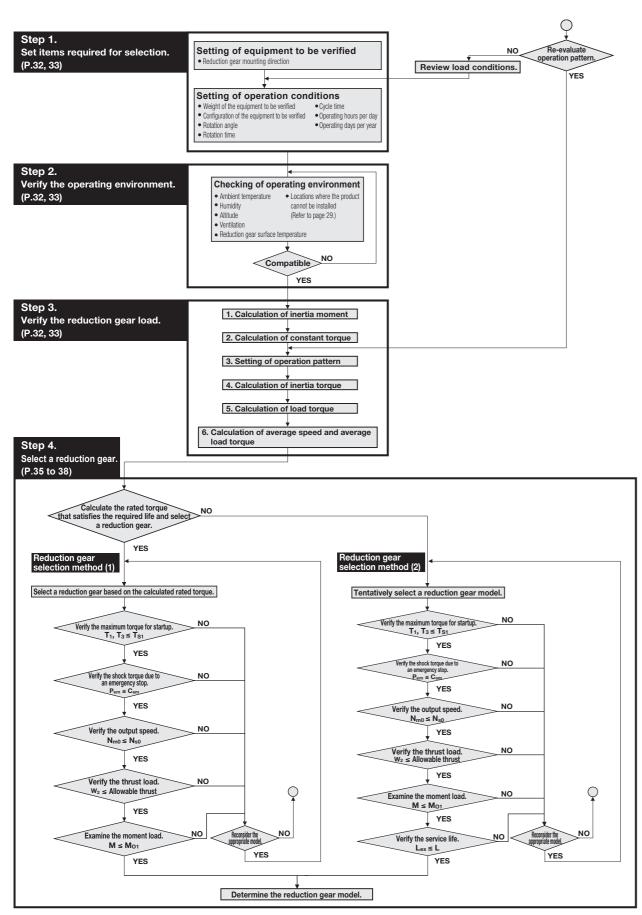
The torque for the input shaft that is required to run the reduction gear without load is referred to as "no-load running torque".

#### Allowable moment and maximum thrust load

The external load moment may be applied to the reduction gear during normal operation. The allowable values of the external moment and the external axial load at this time are each referred to as "allowable moment" and "maximum thrust load".

#### Momentary maximum allowable moment

A large moment may be applied to the reduction gear due to an emergency stop or external shock. The allowable value of the momentary applied moment at this time is referred to as "momentary maximum allowable moment."


Note: Be careful so that the momentary excessive moment does not exceed the momentary maximum allowable moment

#### Repeatability Positioning Accuracy

When one-way positioning is repeated, variations occur in the stopping position. This variation is called 'repetitive positioning accuracy'.





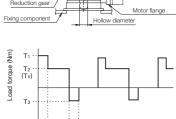


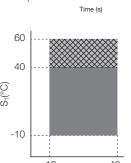
A limitation is imposed on the motor torque value according to the momentary maximum allowable torque of the selected reduction gear. (Refer to page 39.)

#### With horizontal rotational transfer

#### Step 1. Set the items required for selection.

|                                                   | Setting item                                    | Setting                     |
|---------------------------------------------------|-------------------------------------------------|-----------------------------|
| Reduction g                                       | ear mounting direction                          | Vertical shaft installation |
| Equipment                                         | weight to be considered                         |                             |
| W <sub>A</sub>                                    | _ Disk weight (kg)                              | 2,000                       |
| W <sub>B</sub>                                    | _ Work weight (kg)                              | 100×4 pieces                |
| Equipment                                         | configuration to be considered                  |                             |
| D <sub>1</sub>                                    | Disk: D dimension (mm)                          | 1,200                       |
| a                                                 | Workpiece: a dimension (mm)                     | 100                         |
| b ———                                             | Workpiece: b dimension (mm)                     | 300                         |
| D <sub>2</sub>                                    | Workpiece: P.C.D. (mm)                          | 1,000                       |
| Operation of                                      | conditions                                      |                             |
| θ                                                 | − Rotation angle (°)*1                          | 180                         |
| [t <sub>1</sub> +t <sub>2</sub> +t <sub>3</sub> ] | Rotation time (s)                               | 2.5                         |
| [t <sub>4</sub> ]                                 | - Cycle time (s)                                | 20                          |
| Q <sub>1</sub>                                    | - Equipment operation hours per day (hours/day) | 12                          |
| Q <sub>2</sub>                                    | Equipment operation days per year (days/year)   | 365                         |


<sup>\*1.</sup> When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.


#### Step 2. Verify the operating environment.

| Checkpoint                                             | Standard value |  |  |  |  |  |
|--------------------------------------------------------|----------------|--|--|--|--|--|
| S <sub>0</sub> Ambient temperature (°C)                | -10 to +40     |  |  |  |  |  |
| S <sub>1</sub> Reduction gear surface temperature (°C) | 60 or less     |  |  |  |  |  |

Note: Refer to "Operating environment" on p. 29 for values other than those listed above.

## Equipment to be verified: Work Equipment to be verified: Disk





S<sub>0</sub>(°C)

Step 3-1. Examine the reduction gear load

|                                  | 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Setting item                     |                                   | Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selection examples                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| (1) Calculate the                | inertia moment based the calculat | ion formula on page 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| I <sub>R</sub>                   | Load inertia moment<br>(kgm²)     | $\begin{split} I_{R1} = & \frac{W_A \times \left(\frac{D_1}{2 \times 1,000}\right)^2}{2} \\ I_{R2} = & \frac{W_B}{12} \left(\frac{a}{1,000}\right)^2 + \left(\frac{b}{1,000}\right)^2 + W_B \times \left(\frac{D_2}{2 \times 1,000}\right)^2 \right] \times n \\ I_{R1} = & \text{Disk inertia moment} \\ I_{R2} = & \text{Work inertia} \\ I_{R} = & I_{R1} + I_{R2} \\ n = & \text{Number of Workpieces} \end{split}$                                                                                                | $\begin{split} I_{R1} &= \frac{2,000 \times \left(\frac{1,200}{2 \times 1,000}\right)^2}{2} \\ &= 360 \text{ (kgm}^2) \\ I_{R2} &= \begin{bmatrix} \frac{100}{12} \left\{ \frac{100}{1,000} \right\}^2 + \left(\frac{300}{1,000}\right)^2 \right\} + 100 \times \left(\frac{1,000}{2 \times 1,000}\right)^2 \end{bmatrix} \times 4 \\ &= 103.3 \text{ (kgm}^2) \\ I_{R} &= 360 + 103.3 \\ &= 463.3 \text{ (kg m}^2) \end{split}$ |  |  |
| (2) Examine the constant torque. |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| T <sub>R</sub>                   | Constant torque<br>(Nm)           | T <sub>R</sub> =(W <sub>A</sub> +W <sub>B</sub> )× 9.8 × D <sub>in</sub> /2×1,000 × μ μ=Friction factor  Note: Use 0.015 for this example as the load is applied to the bearing of the Precision Reduction Gear RV <sup>TM</sup> . D <sub>in</sub> = Rolling diameter: Use the pilot diameter which is almost equivalent to the rolling diameter in this selection calculation.  Note: If the reduction gear model is not determined, select the following pilot diameter:  Maximum pilot diameter: 490 (mm) (RS-900A) | $T_R = (2,000 + 100 \times 4) \times 9.8 \times \frac{490}{2 \times 1,000} \times 0.015$<br>= 86.4 (Nm)                                                                                                                                                                                                                                                                                                                          |  |  |

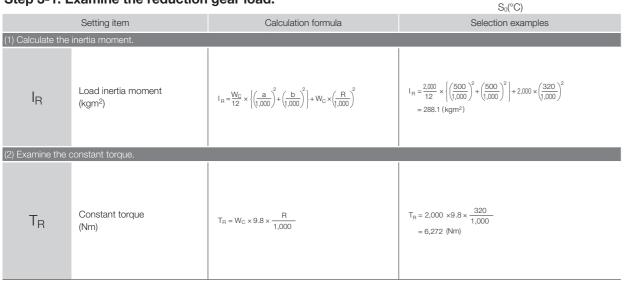
Step 3-2: Proceed to p. 34.

Equipment to be examined (Movable section)

#### With vertical rotational transfer

#### Step 1. Set the items required for selection.

| •                                                            |                               |
|--------------------------------------------------------------|-------------------------------|
| Setting item                                                 | Setting                       |
| Reduction gear mounting direction                            | Horizontal shaft installation |
| Equipment weight to be considered                            |                               |
| W <sub>C</sub> ———Mounted work weight (kg)                   | 2,000                         |
| Equipment configuration to be considered                     |                               |
| a ——— a dimension (mm)                                       | 500                           |
| b ———— b dimension (mm)                                      | 500                           |
| R R dimension (mm)                                           | 320                           |
| Operation conditions                                         |                               |
| $\theta$ ———— Rotation angle (°)*1                           | 90                            |
| $[t_1+t_2+t_3]$ — Rotation time (s)                          | 1.5                           |
| [t <sub>4</sub> ] ———— Cycle time (s)                        | 20                            |
| Q <sub>1</sub> Equipment operation hours per day (hours/day) | 24                            |
| Q2 — Equipment operation days per year (days/year)           | 365                           |
|                                                              |                               |


<sup>\*1.</sup> When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

#### Step 2. Verify the operating environment.

| Checkpoint                                                  | Standard value |
|-------------------------------------------------------------|----------------|
| S <sub>0</sub> ———— Ambient temperature (°C)                | -10 to +40     |
| S <sub>1</sub> ———— Reduction gear surface temperature (°C) | 60 or less     |

Note: Refer to "Operating environment" on p. 29 for values other than those listed above.

#### Step 3-1. Examine the reduction gear load.



Step 3-2: Proceed to p. 34.

(Refer to "With horizontal rotational transfer" for selection examples.)

Step 3-2. Set items required for selection.

|                    | Setting item                            | Calculation formula                                                                                                                                                                                                                                | Selection examples (With horizontal rotational transfer)                                                                                                                                           |
|--------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Set the        | acceleration/deceleration time, con     | stant-speed operation time, and output speed.                                                                                                                                                                                                      |                                                                                                                                                                                                    |
| t <sub>1</sub>     | —— Acceleration time (s)                | The operation pattern does not need to be verified if it is already set. If the operation pattern has not been determined, use the following formula to calculate the reference operation pattern.                                                 | Examine the operation pattern using N <sub>2</sub> = 15 rpm as the reduction gear output speed is unknown. $t_1 = t_3 = 2.5 - \frac{180}{\left(\frac{15}{60} \times 360\right)} = 0.5 \text{ (s)}$ |
| t <sub>2</sub>     | Constant-speed operation time (s)       | $t_1 = t_3 = \text{Rotation } [t_1 + t_2 + t_3] - \frac{\theta}{\left(\frac{N_2}{60} \times 360\right)}$<br>$t_2 = \text{Rotation } [t_1 + t_2 + t_3] - (t_1 + t_3)$                                                                               | $ \frac{\left(\frac{15}{60} \times 360\right)}{t_2 = 2.5 - (0.5 + 0.5) = 1.5 \text{ (s)} $                                                                                                         |
| t <sub>3</sub> ——— | —— Deceleration time (s)                | Note: 1. Assume that t <sub>1</sub> and t <sub>3</sub> are the same.  Note: 2. N <sub>2</sub> = 15 rpm if the reduction gear output speed (N <sub>2</sub> ) is not known.                                                                          | $\therefore t_1 = t_3 = 0.5 \text{ (s)}$<br>$t_2 = 1.5 \text{ (s)}$                                                                                                                                |
| N <sub>2</sub>     | Constant speed (rpm)                    | Note: 3. If t <sub>1</sub> and t <sub>3</sub> is less than 0, increase the output speed or extend the rotation time.                                                                                                                               | N <sub>2</sub> =15 (rpm)                                                                                                                                                                           |
| N <sub>1</sub>     | Average speed for startup (rpm)         | $N_1 = \frac{N_2}{2}$                                                                                                                                                                                                                              | $N_1 = \frac{15}{2} = 7.5 \text{ (rpm)}$                                                                                                                                                           |
| N <sub>3</sub>     | Average speed for stop (rpm)            | $N_3 = \frac{N_2}{2}$                                                                                                                                                                                                                              | $N_3 = \frac{15}{2} = 7.5 \text{ (rpm)}$                                                                                                                                                           |
| (2) Calcula        | te the inertia torque for acceleration. | /deceleration.                                                                                                                                                                                                                                     |                                                                                                                                                                                                    |
| T <sub>A</sub>     | Inertia torque for acceleration (Nm)    | $T_{A} = \left\{ \frac{I_{R} \times (N_{2} - 0)}{t_{1}} \right\} \times \frac{2\pi}{60}$                                                                                                                                                           | $T_{A} = \left\{ \frac{463.3 \times (15 - 0)}{0.5} \right\} \times \frac{2\pi}{60}$ = 1,455 (Nm)                                                                                                   |
| T <sub>D</sub>     | Inertia torque for deceleration (Nm)    | $T_{D} = \left\{ \frac{I_{R} \times (0 - N_{2})}{t_{3}} \right\} \times \frac{2\pi}{60}$                                                                                                                                                           | $T_{D} = \left\{ \frac{463.3 \times (0-15)}{0.5} \right\} \times \frac{2\pi}{60}$ $= -1,455 \text{ (Nm)}$                                                                                          |
| (3) Calcula        | te the load torque for acceleration/o   | leceleration.                                                                                                                                                                                                                                      |                                                                                                                                                                                                    |
| T <sub>1</sub>     | Maximum torque for startup<br>(Nm)      | T <sub>1</sub> =  T <sub>A</sub> +T <sub>R</sub>   T <sub>R</sub> : Constant torque With horizontal rotational transfer Refer to page 32 With vertical rotational transfer Refer to page 33                                                        | T <sub>1</sub> =  1,455 +86.4  <br>= 1,541.4 (Nm)                                                                                                                                                  |
| T <sub>2</sub>     | Constant maximum torque (Nm)            | $T_2 =  T_R $                                                                                                                                                                                                                                      | T <sub>2</sub> = 86.4 (Nm)                                                                                                                                                                         |
| T <sub>3</sub>     | Maximum torque for stop (Nm)            | $\begin{aligned} T_3 &= \left  T_D + T_R \right  \\ T_R &: \text{Constant torque} \\ & \text{With horizontal rotational transfer}  \text{Refer to page } 32 \\ & \text{With vertical rotational transfer}  \text{Refer to page } 33 \end{aligned}$ | T <sub>3</sub> = -1,455 +86.4  <br>=1,368.6 (Nm)                                                                                                                                                   |
| (4)-1 Calcu        | ulate the average speed.                | ·                                                                                                                                                                                                                                                  | !<br>                                                                                                                                                                                              |
| N <sub>m</sub>     | —— Average speed (rpm)                  | $N_{m} = \frac{t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}{t_{1} + t_{2} + t_{3}}$                                                                                                                                               | $N_{m} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{0.5 + 1.5 + 0.5}$ = 12 (rpm)                                                                                                       |
| (4)-2 Calcu        | ulate the average load torque.          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |
| T <sub>m</sub>     | —— Average load torque (Nm)             | $T_{m}^{10} = \sqrt[]{t_{1} \times N_{1} \times T_{1}^{3} + t_{2} \times N_{2} \times T_{2}^{3} + t_{3} \times N_{3} \times T_{3}^{3}} \atop t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}$                                        | $T_{m} = \sqrt[3]{ 0.5 \times 7.5 \times 1,541.4} \frac{10}{3 + 1.5 \times 15 \times 86.4} \frac{10}{3 + 0.5 \times 7.5 \times 1,368.6} \frac{10}{3} $ $= 963.9 \text{ (Nm)}$                      |
|                    |                                         |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    |

Go to page 35 if the reduction gear model is verified based on the required life. Go to page 37 if the service life is verified based on the reduction gear model.

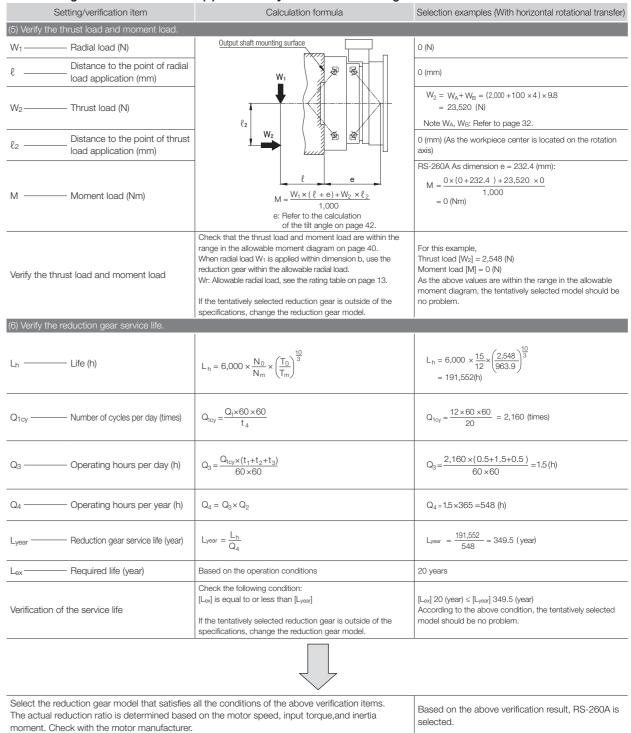


#### Step 4. Select a reduction gear.

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

|                                                     | Setting/verification item                                         | Calculation formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selection examples (With horizontal rotational transfer)                                                                                                                                  |  |
|-----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (1) Calcula                                         | ate the rated torque for the reduction                            | gear that satisfies the required life.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |  |
| L <sub>ex</sub> —                                   | Required life (year)                                              | Based on the operation conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 years                                                                                                                                                                                  |  |
| Q <sub>1cy</sub> —                                  | Number of cycles per day (times)                                  | $Q_{tcy} = \frac{Q_1 \times 60 \times 60}{t_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Q_{tcy} = \frac{12 \times 60 \times 60}{20}$<br>= 2,160 (times)                                                                                                                          |  |
| Q <sub>3</sub> ———                                  | Operating hours of reduction gear per day (h)                     | $Q_3 = \frac{Q_{toy} \times (t_1 + t_2 + t_3)}{60 \times 60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Q_3 = \frac{2,160 \times (0.5 + 1.5 + 0.5)}{60 \times 60}$<br>= 1.5 (h)                                                                                                                  |  |
| Q <sub>4</sub> ———                                  | Operating hours of reduction gear per year (h)                    | $Q_4 = Q_3 \times Q_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>4</sub> =1.5×365<br>=548 (h)                                                                                                                                                       |  |
| L <sub>hour</sub> —                                 |                                                                   | $Lhour = Q_4 \times L_ex$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L <sub>hour</sub> = 548 × 20<br>= 10,960 (h)                                                                                                                                              |  |
| T <sub>O</sub> '                                    | Reduction gear rated torque that satisfies the required life (Nm) | $\begin{split} &T_0{}' = T_m \times \frac{10}{3} \sqrt{\frac{Lhour}{K} \times \frac{N_m}{N_0}} \\ &K : \text{Reduction gear rated life (h)} \\ &N_0 : \text{Reduction gear rated output speed (rpm)} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                       | To' = 963.9 $\times {\binom{10}{3}} \sqrt{\frac{10,960}{6,000} \times \frac{12}{15}}$<br>= 1.080 (Nm)                                                                                     |  |
| (2) Tentati                                         | vely select a reduction gear model ba                             | ased on the calculated rated torque.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |  |
| Tentative selection of the reduction gear           |                                                                   | Select a reduction gear for which the rated torque of the reduction gear [To] <sup>*1</sup> is equal to or greater than the rated torque of the reduction gear that satisfies the required life [To].  *1 [To]: Refer to the rating table on page 13.                                                                                                                                                                                                                                                                                                                                                                   | RS-260A that meets the following condition is tentatively selected: $ [T_0] \ 2,548 \ (Nm) \ge [T_0'] \ 1.080 \ (Nm) $                                                                    |  |
| (3) Verify t                                        | he maximum torque for startup and s                               | stop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |  |
| Verification of maximum torque for startup and stop |                                                                   | Check the following conditions: The allowable acceleration/deceleration torque [T <sub>51</sub> ] <sup>-1</sup> is equal to or greater than the maximum starting torque [T <sub>1</sub> ] <sup>-2</sup> and maximum stopping torque [T <sub>3</sub> ] <sup>-2</sup> If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.                                                                                                                                                                                                                                       | $ [\Gamma_{s1}] \ 6,370 \ (Nm) \geq [\Gamma_1] \ 1,541.4 \ (Nm) $ $ [\Gamma_3] \ 1,368.6 \ (Nm) $ According to the above conditions, the tentatively selected model should be no problem. |  |
|                                                     |                                                                   | *1 [T <sub>s1</sub> ]: Refer to the rating table on page 13. *2 [T <sub>1</sub> ] and [T <sub>3</sub> ]: Refer to page 34.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |  |
| (4) Verify t                                        | he output speed.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |  |
| N <sub>m0</sub> — Average speed per cycle (rpm)     |                                                                   | $N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ = 1.5 (rpm)                                                                                                         |  |
| Verification of output speed                        |                                                                   | Check the following condition: The allowable output speed [N <sub>s0</sub> ] <sup>-1</sup> is equal to or greater than the average speed per cycle [N <sub>m0</sub> ]  If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.  Contact us regarding use of the model at a speed outside the allowable output speed [N <sub>s0</sub> ] <sup>-1</sup> .  Note: The value of [N <sub>s0</sub> ] is the speed at which the case temperature is balanced at 60°C for 30 minutes.  *1 [N <sub>s0</sub> ] and [N <sub>s1</sub> ]: Refer to the rating table on page 13. |                                                                                                                                                                                           |  |

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.


|                                                          | Setting/verification item                                                  | Calculation                                                                                                                                                                                                                                                                                                                                                                                                      | on formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Selection examples (With horizontal rotational trans                                                                                                                                                            |
|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) Verify th                                            | e shock torque at the time of an em                                        | nergency stop.                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| P <sub>em</sub> ——                                       | Expected number of emergency stop times (times)                            | Based on the operation conditions.                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For example, an emergency stop occurs once a month.<br>[Pem] = 1 x 12 x required life (year) [Lex]<br>= 12×20=240 (times)                                                                                       |
| T <sub>em</sub> ——                                       | Shock torque due to an emergency stop (Nm)                                 | (Mm) board to reque                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For example, [T <sub>em</sub> ] = 5,000 (Nm)                                                                                                                                                                    |
| N <sub>em</sub> —                                        | Speed at the time of an emergency stop (rpm)                               | -L <sup>ew</sup>                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For example, [N <sub>em</sub> ] = 15 (rpm)                                                                                                                                                                      |
| t <sub>em</sub> ——                                       | Deceleration time at the time of an emergency stop (s)                     | N <sub>um</sub> N <sub>bm</sub> be set S                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| Z4 ———                                                   | Number of pins for reduction gear                                          | Model<br>RS-50A/RS-50B<br>RS-260A/RS-260B<br>RS-320A/RS-320B<br>RS-400A<br>RS-900A                                                                                                                                                                                                                                                                                                                               | 52<br>60<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of pins for RS-260A: 60                                                                                                                                                                                  |
| C <sub>em</sub> ——                                       | Allowable number of shock torque application times                         | $C_{em} = \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}}$ Note $[T_{s2}]$ : Momentary maximum allowable torque, refer to the rating table on page 13.                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{\text{em}} = \frac{775 \times \left(\frac{12,740}{5,000}\right)^{\frac{10}{3}}}{60 \times \frac{15}{60} \times 0.05} = 23,347 \text{ (times)}$                                                              |
| Verification of shock torque due to an<br>emergency stop |                                                                            | Check the following condition:  The allowable shock torque application count [C <sub>em</sub> ] is equal to or greater than the expected emergency stop count [P <sub>em</sub> ]  If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $[C_{em}]$ 23,347 $\geq$ $[P_{em}]$ 240<br>According to the above condition, the tentatively selected model should be no problem.                                                                               |
| (6) Verify th                                            | e thrust load and moment load.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| W <sub>1</sub>                                           | R adial load (N)                                                           | Output shaft mounting surface                                                                                                                                                                                                                                                                                                                                                                                    | e Province of the control of the con | 0 (N)                                                                                                                                                                                                           |
| ٤ —                                                      | Distance to the point of radial load application (mm)                      | W <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (mm)                                                                                                                                                                                                          |
| W <sub>2</sub>                                           | —— Thrust load (N)                                                         | ℓ <sub>2</sub> W <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In this example, $ W_2 = W_A + W_B = (2,000 + 100 \times 4) \times 9.8 $ = 23,520 (N) $ Note \ W_A, W_B : Refer to page 32. $                                                                                   |
| l <sub>2</sub> ——                                        | Distance to the point of thrust load application (mm)                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 (mm) (As the workpiece center is located on the rotati axis)                                                                                                                                                  |
| м ——                                                     | — Moment load (Nm)                                                         | $M = \frac{W_1 \times (\ell + e) + W_2 \times \ell_2}{1,000}$ e: Refer to the calculation of the tilt angle on page 42.                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS-260A As dimension e = 232.4 (mm):<br>$M = \frac{0 \times (0 + 232.4) + 23,520 \times 0}{1,000}$ = 0 (Nm)                                                                                                     |
| Verify the thrust load and moment load                   |                                                                            | Check that the thrust load and moment load are within the range in the allowable moment diagram on page 40.  When radial load W <sub>1</sub> is applied within dimension b, use the reduction gear within the allowable radial load.  Wr. Allowable radial load, see the rating table on page 13.  If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For this example, Thrust load [W <sub>2</sub> ] = 23,520 (N) Moment load [M] = 0 (N) As the above values are within the range in the allowabl moment diagram, the tentatively selected model should no problem. |
|                                                          |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
| The actual                                               | reduction gear model that satisfies a reduction ratio is determined based. |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Based on the above verification result, RS-260A selected.                                                                                                                                                       |



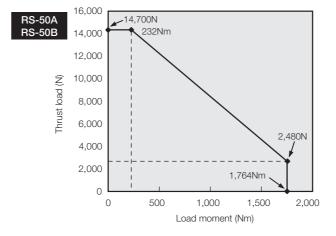


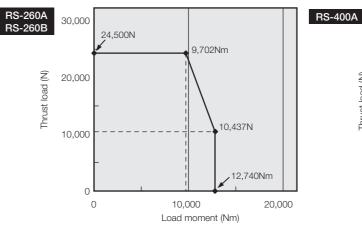
| Setting/verification item                                              | Calculation formula                                                                                                                                                                                                                                                                                                                                              | Selection examples (With horizontal rotational transfer                                                                                                                   |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Tentatively select a desired reduction gear                        | nodel.                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                           |
| Tentative selection of a reduction gear                                | Tentatively select a desired reduction gear model.                                                                                                                                                                                                                                                                                                               | For example, tentatively select RS-260A.                                                                                                                                  |
| 2) Verify the maximum torque for startup and                           | stop.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                           |
| Verification of maximum torque for startup<br>and stop                 | Check the following conditions:<br>The allowable acceleration/deceleration torque $[T_{s1}]^{-1}$ is equal to or greater than the maximum starting torque $[T_{1}]^{-2}$ and maximum stopping torque $[T_{3}]^{-2}$<br>If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.                             | $ [T_{s1}] \ 6,370 \ (Nm) \ge [T_1] \ 1,541.4 \ (Nm) $ $ [T_3] \ 1,368.6 \ (Nm) $ According to the above conditions, the tentatively selected model should be no problem. |
|                                                                        | *1 [T <sub>s1</sub> ]: Refer to the rating table on page 13. *2 [T <sub>1</sub> ] and [T <sub>3</sub> ]: Refer to page 34.                                                                                                                                                                                                                                       |                                                                                                                                                                           |
| 3) Verify the output speed.                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                           |
| N <sub>m0</sub> ——— Average speed per cycle (rpm)                      | $N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$                                                                                                                                                                                                                                                                                          | $N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ $= 1.5 (rpm)$                                                                                       |
| Verification of output speed                                           | Check the following condition: The allowable output speed $[N_{S0}]^{-1}$ is equal to or greater than the average speed per cycle $[N_{m0}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. Contact us regarding use of the model at a speed outside the allowable output speed $[N_{S0}]^{-1}$ . | $[N_{s0}]\ 21.5\ (rpm) \geq [N_{m0}]\ 1.5\ (rpm)$ According to the above condition, the tentatively selected model should be no problem.                                  |
|                                                                        | Note: The value of [Nso] is the speed at which the case temperature is balanced at 60°C for 30 minutes.  *1 [Nso] and [Ns1]: Refer to the rating table on page 13.                                                                                                                                                                                               |                                                                                                                                                                           |
| (4) Verify the shock torque at the time of an en                       | nergency stop.                                                                                                                                                                                                                                                                                                                                                   | le                                                                                                                                                                        |
| P <sub>em</sub> Expected number of emergency stop times (times)        | Based on the operation conditions.                                                                                                                                                                                                                                                                                                                               | For example, an emergency stop occurs once a month. $ [P_{em}] = 1 \times 12 \times \text{required life (year) } [L_{ex}] $ $ = 12 \times 20 = 240 \text{ (times)} $      |
| T <sub>em</sub> Shock torque due to an emergency stop (Nm)             | Load torque (Nm)                                                                                                                                                                                                                                                                                                                                                 | For example, [T <sub>em</sub> ] = 500 (Nm)                                                                                                                                |
| N <sub>em</sub> Speed at the time of an emergency stop (rpm)           | 5<br>B<br>9<br>-T <sub>on</sub>                                                                                                                                                                                                                                                                                                                                  | For example, [N <sub>em</sub> ] = 15 (rpm)                                                                                                                                |
| t <sub>em</sub> Deceleration time at the time of an emergency stop (s) | Set the operation conditions that meet the following requirement: Shock torque due to an emergency stop [Tem] is equal to or less than the momentary maximum allowable torque [Tsz]                                                                                                                                                                              | For example, $[t_{em}] = 0.05$ (s)                                                                                                                                        |
| Z <sub>4</sub> — Number of pins for reduction gear                     | Model   Number of pins (Z4)     RS-50A/RS-50B   52     RS-260A/RS-260B     RS-320A/RS-320B   60     RS-400A     RS-900A   58                                                                                                                                                                                                                                     | Number of pins for RS-260A: 60                                                                                                                                            |
| C <sub>em</sub> Allowable number of shock torque application times     | $C_{em} = \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}}$ Note $[T_{s2}]$ : Momentary maximum allowable torque, refer to the rating table on page 13.                                                                                                                                           | $C_{\text{em}} = \frac{775 \times \left(\frac{1,225}{500}\right)^{\frac{10}{3}}}{40 \times \frac{15}{60} \times 0.05} = 30,729 \text{ (times)}$                           |
| Verification of shock torque due to an emergency stop                  | rating table on page 13.  Check the following condition:  The allowable shock torque application count [C <sub>em</sub> ] is equal to or greater than the expected emergency stop count [P <sub>em</sub> ]                                                                                                                                                       | [Cem] 23,347 ≥ [Pem] 240 According to the above condition, the tentatively selected model should be no problem.                                                           |

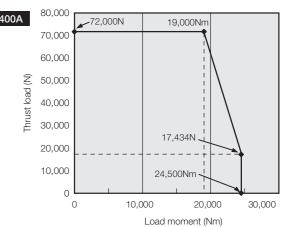
#### Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

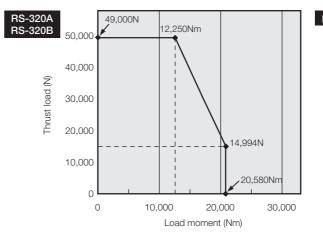


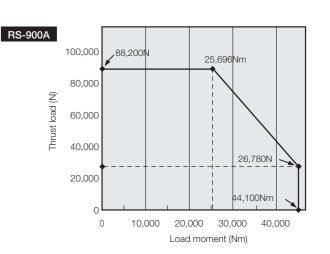



If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.





#### Limitation on the motor torque

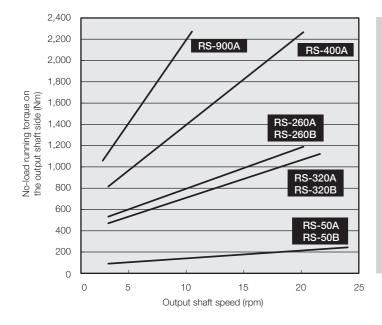

A limitation is imposed on the motor torque value so that the shock torque applied to the reduction gear does not exceed the momentary maximum allowable torque.


| Setting/verification item                                                                                                                                      | Calculation formula                                                                                                                                                                                                                                                                                                                                                 | Selection examples (With horizontal rotational transfer)                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>M1</sub> Motor momentary maximum torque (Nm)                                                                                                            | Determine based on the motor specifications.                                                                                                                                                                                                                                                                                                                        | For example, T <sub>M1</sub> = 90 (Nm)                                                                                                                                                                                   |
| Maximum torque generated at the output shaft for the reduction gear (Nm)                                                                                       | $T_{M1out} = T_{M1} \times R \times \frac{100}{\eta}$ R: Actual reduction ratio                                                                                                                                                                                                                                                                                     | For example, calculate the maximum torque generated at the output shaft for the reduction gear based on the specifications when RS-260A-120 was selected. $T_{M\ \text{lout}} = 90 \ \times 120 \ \times \frac{100}{75}$ |
| (When an external shock is applied at the time of an emergency stop or motor stop)                                                                             | η: Startup efficiency (%) ,refer to the rating table on page 13.                                                                                                                                                                                                                                                                                                    | = 14,400 (Nm)                                                                                                                                                                                                            |
| Maximum torque generated at the TM2OUT — output shaft for the reduction gear (Nm)  (When a shock is applied to the output shaft due to hitting by an obstacle) | $T_{M2out} = T_{M1} \times R \times \frac{\eta}{100}$                                                                                                                                                                                                                                                                                                               | $T_{M2out} = 10 \times 120 \times \frac{75}{100}$<br>= 8,100 (Nm)                                                                                                                                                        |
| Limitation on motor torque value                                                                                                                               | Check the following condition: The momentary maximum allowable torque [Tsz]*1 is equal to or greater than the maximum torque generated at the output shaft for the reduction gear [TM10ut] and [TM20ut] If the above condition is not satisfied, a limitation is imposed on the maximum torque value of the motor.  *1 [Tsz]: Refer to the rating table on page 13. | $ [T_{S2}] \ 12,740 \ (Nm) \leq [T_{M10UT}] \ 14,400 \ (Nm) \ and \\ [T_{M20UT}] \ 8,100 \ (Nm) $ According to the above condition, the torque limit is set for the motor.                                               |












When the load moment and the axial load are applied concurrently, ensure that the reduction gear is used within the corresponding allowable moment range, which is indicated in the allowable moment diagram.







The no-load running torque that is converted to the input shaft side value should be calculated using the following equation:

No-load running torque on the input shaft side (Nm)

No-load running torque on the output shaft side (Nm)

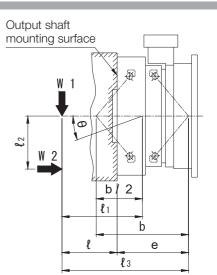
(Measurement conditions)
Case temperature: 20°C

Lubricant: RVGREASE™ LB00

(RS-50A, RS-50B, RS-260A, RS-260B, RS-400A)

Molywhite RE00

(RS-320A, RS-320B, RS-900A)


#### Calculation of tilt angle

When a load moment occurs with an external load applied, the output shaft will tilt in proportion to the load moment (If  $\ell_3$  is larger than b) The moment rigidity indicates the rigidity of the main bearing, and it is represented by the load moment value required for tilting the main bearing by 1 arc.min.

 $\theta = \begin{array}{c} \theta & \text{: Tilt angle of the output shaft (arc.min.)} \\ \frac{W_1\ell_1 + W_2\ell_2}{M_1 \times 10^3} & W_1, \ W_2 : \text{Load (N)} \\ \ell_1, \ell_2 & \text{: Distance to the point of load} \end{array}$ 

> : Distance from the output shaft installation surface to the point of load application (mm)

|         | Moment rigidity                  | Dimensions (mm) |       |
|---------|----------------------------------|-----------------|-------|
| Model   | Reference value<br>(Nm/arc.min.) | b               | е     |
| RS-50A  | 1.060                            | 187.1           | 158.7 |
| RS-50B  | 1,960                            | 107.1           | 136.7 |
| RS-260A | 8,320                            | 319.3           | 232.4 |
| RS-260B | 0,320                            | 319.3           | 202.4 |
| RS-320A | 10.740                           | 276.4           | 268.5 |
| RS-320B | 12,740                           | 376.4           | 168.5 |
| RS-400A | 19,600                           | 369.8           | 264.2 |
| DC 000V | 27 720                           | 433 A           | 225.4 |



#### Calculation of torsion angle

Calculate the torsion angle when the torque is applied in a single direction, using an example of RS-260A.

1) When the load torque is 50 Nm.....Torsion angle (ST<sub>1</sub>)

When the load torque is within the lost motion range

$$ST_1 = \frac{\text{Load torque}}{3\% \text{ of reduction gear rated torque}} \times \frac{\text{Lost motion}}{2} = \frac{50}{76.4} \times \frac{1 \text{ (arc.min.)}}{2} = 0.33 \text{arc.min. or less}$$

2) When the load torque is 1,300 Nm.....Torsion angle (ST<sub>2</sub>) When the load torque is within the rated torque range

$$ST_2 = \frac{Lost\ motion}{2} + \frac{Load\ torque-3\%\ of\ reduction\ gear\ rated\ torque}{Spring\ constant} = \frac{1}{2} + \frac{2,100-76.4}{1,540} = 1.81 arc.min.$$

Note: 1. The torsion angles that are calculated above are for a single reduction gear.

2. Contact us for the customized specifications for lost motion.

|         | Torsional rigidity            | Lost r                 | Backlash             |            |
|---------|-------------------------------|------------------------|----------------------|------------|
| Model   | Reference value (Nm/arc.min.) | Lost motion (arc.min.) | Measured torque (Nm) | (arc.min.) |
| RS-50A  | 255                           | 1.5                    | +14.7                | 1.5        |
| RS-50B  | 200                           | 1.5                    | ±14.7                | 1.5        |
| RS-260A | 1.540                         |                        | +76.4                |            |
| RS-260B | 1,540                         |                        | ±70.4                |            |
| RS-320A | 1,570                         | 1.0                    | +94.1                | 1.0        |
| RS-320B | 1,570                         | 1.0                    | ±94.1                | 1.0        |
| RS-400A | 2,450                         |                        | ±117.6               |            |
| RS-900A | 4,900                         |                        | ±264.6               |            |

#### Installation of the reduction gear and mounting it to the output shaft

When installing the reduction gear and mounting it to the output shaft, use hexagon socket head cap screws and tighten to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted in the rating table.

The use of the serrated lock washers are recommended to prevent the hexagon socket head cap screws from loosening and to protect the seat surface from flaws.

#### Hexagon socket head cap screw

<Bolt tightening torque and tightening force>

| Hexagon socket head cap screw nominal size x pitch | Tightening torque | Tightening force<br>F | Bolt specification              |
|----------------------------------------------------|-------------------|-----------------------|---------------------------------|
| (mm)                                               | (Nm)              | (N)                   |                                 |
| M5 × 0.8                                           | 9.01 ± 0.49       | 9,310                 | - Hexagon socket head cap screw |
| M6 × 1.0                                           | 15.6 ± 0.78       | 13,180                | JIS B 1176: 2006                |
| M8 × 1.25                                          | 37.2 ± 1.86       | 23,960                | Strength class                  |
| M10 × 1.5                                          | 73.5 ± 3.43       | 38,080                | JIS B 1051: 2000 12.9           |
| M12 × 1.75                                         | 129 ± 6.37        | 55,100                | Thread                          |
| M16 × 2.0                                          | 319 ± 15.9        | 103,410               | JIS B 0209: 2001 6g             |
| M18 × 2.5                                          | 441 ± 22.0        | 126,720               |                                 |
| M20 × 2.5                                          | 493 ± 24.6        | 132,170               |                                 |

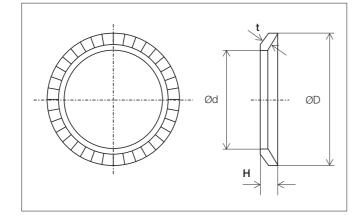
Note: 1. The tightening torque values listed are for steel or cast iron material.

If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also take the transmission torque and load moment into due consideration.

< Calculation of allowable transmission torque of bolts>

|                                                             | Т | Allowable transmission torque by tightening bolt (Nm)        |
|-------------------------------------------------------------|---|--------------------------------------------------------------|
|                                                             | F | Bolt tightening force (N)                                    |
| D                                                           | D | Bolt mounting P.C.D. (mm)                                    |
| $T = F \times \mu \times \frac{D}{2 \times 1,000} \times n$ | μ | Friction factor                                              |
|                                                             |   | $\mu$ =0.15: When lubricant remains on the mating face.      |
|                                                             |   | $\mu$ =0.20: When lubricant is removed from the mating face. |
|                                                             | n | Number of bolts (pcs.)                                       |

#### · Serrated lock washer for hexagon socket head cap screw


Name: Belleville spring washer (made by Heiwa Hatsujyo Industry Co., Ltd.)

Corporation symbol: CDW-H

CDW-L (Only for M5)

Material: S50C to S70C Hardness: HRC40 to 48

| i iaiui iess. i i | 1104010                                     | (   | (Unit: mm) |      |
|-------------------|---------------------------------------------|-----|------------|------|
| Nominal           | ID and OD of<br>Belleville<br>spring washer |     |            |      |
| size              | Ød                                          | ØD  | t          | Н    |
| 5                 | 5.25                                        | 8.5 | 0.6        | 0.85 |
| 6                 | 6.4                                         | 10  | 1.0        | 1.25 |
| 8                 | 8.4                                         | 13  | 1.2        | 1.55 |
| 10                | 10.6                                        | 16  | 1.5        | 1.9  |
| 12                | 12.6                                        | 18  | 1.8        | 2.2  |
| 16                | 16.9                                        | 24  | 2.3        | 2.8  |
| 18                | 18.9                                        | 27  | 2.6        | 3.15 |
| 20                | 20.9                                        | 30  | 2.8        | 3.55 |



Note: When using any equivalent washer, select it with special care given to its outside diameter D.

#### Lubrication

• The standard lubrication method for the RS reduction gears is greasing.

Before the reduction gear is shipped, it is filled with our recommended grease. (For the brand of the pre-filled grease, refer to the following table.)

When operating a reduction gear filled with the appropriate amount of grease, the standard replacement time due to deterioration of the grease is 20,000 hours.

When using the gear with deteriorated grease or under an inappropriate ambient temperature condition (40°C or more), check the deterioration condition of the grease and determine the appropriate replacement cycle.

• Specified grease name

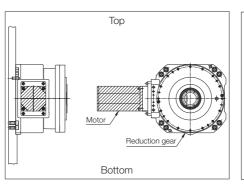
| Model               | RS-50A/B<br>RS-320A/B<br>RS-900A | RS-260A/B<br>RS-400A | RS-50A/B<br>RS-320A/B<br>RS-900A | RS-260A/B<br>RS-400A | RS-50A/B<br>RS-320A/B<br>RS-900A | RS-260A/B<br>RS-400A |
|---------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|
| Lubricant code      | SB                               |                      | LB                               |                      | MW                               |                      |
| Brand               | RVOIL™ SB150                     |                      | RVGREASE™ LB00                   |                      | Molywhite RE00                   |                      |
| Manufacturer        | Nabtesco Corporation             |                      |                                  |                      |                                  |                      |
| Ambient temperature | -10 to 40°C                      |                      |                                  |                      |                                  |                      |

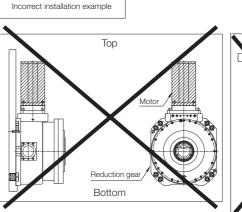
• It is recommended that the running-in operation is performed.

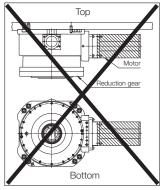
Abnormal noise or torque variation may occur during operation due to the characteristics of the lubricant. There is no problem with the quality when the symptom disappears after the running-in operation is performed.

#### Requirements for equipment design

- If the lubricant leaks from the reduction gear or if the motor fails, the reduction gear must be removed. Design the equipment while taking this into consideration.
- As the center pipe at the center of the reduction unit is not designed to support a load, do not use the reduction gear in a way that applies a load to the center pipe. The oil seals may be deformed, which could eventually cause leakage of the lubricant.


#### Attention for lifting reduction gear


• Be sure that no load is applied to the center pipe or spline hole on the input unit when lifting. The oil seals on the output and/or input sides may become deformed, which could eventually cause leakage of the lubricant.


#### Reduction gear installation

Correct installation example

- For the horizontal shaft installation, do not install the reduction gear while the input shaft (motor) position faces upward. (Be sure to confirm that the input shaft position faces right, left, or downward during installation.)
- If you intend to use the reduction gear attached to the ceiling, contact our customer representative.







© 2015 Nabtesco Corporation. All rights reserved.



### Appendix Inertia moment calculation formula

| Shape                                                                                   | I(kgm²)                                                                                                                                                                                                 | Shape                                                                                                                               | I(kgm²)                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Cylinder solid                                                                       |                                                                                                                                                                                                         | 6. Horizontal movement by conveyor                                                                                                  |                                                                                                                                                                                                                                                                           |
| M(kg)   Z   Z   R(m)   X   a(m)                                                         | $I_x = \frac{1}{2} MR^2$ $I_y = \frac{1}{4} M \left(R^2 + \frac{a^2}{3}\right)$ $I_z = I_y$                                                                                                             | $\underbrace{\frac{M_1(kg)}{M_2(kg)}}_{R(m)}\underbrace{\frac{V(m/min)}{M_2(kg)}}_{R(m)}\underbrace{\frac{M_2(kg)}{R(m)}}_{N(rpm)}$ | $I = \left(\frac{M_1 + M_2}{2} + M_3 + M_4\right) \times R^2$                                                                                                                                                                                                             |
| 2. Cylinder hollow                                                                      |                                                                                                                                                                                                         | 7. Horizontal movement by lead screw                                                                                                |                                                                                                                                                                                                                                                                           |
| M(kg) Z                                                                                 | $I_{x} = \frac{1}{2}M \left(R_{1}^{2} + R_{2}^{2}\right)$ $I_{y} = \frac{1}{4}M \left\{ \left(R_{1}^{2} + R_{2}^{2}\right) + \frac{a^{2}}{3}\right\}$ $I_{z} = I_{y}$                                   | M(kg) N(rpm) Lead: P(m/rev)                                                                                                         | $I = \frac{M}{4} \left( \frac{V}{\pi \times N} \right)^2 = \frac{M}{4} \left( \frac{P}{\pi} \right)^2$                                                                                                                                                                    |
| 3. Oval cross section                                                                   |                                                                                                                                                                                                         | 8. Up/down movement by hoist                                                                                                        |                                                                                                                                                                                                                                                                           |
| M(kg)   Z   Z   Z   E   E   E   E   E   E   E                                           | $I_{x} = \frac{1}{16} M \left( b^{2} + c^{2} \right)$ $I_{y} = \frac{1}{4} M \left( \frac{c^{2}}{4} + \frac{a^{2}}{3} \right)$ $I_{z} = \frac{1}{4} M \left( \frac{b^{2}}{4} + \frac{a^{2}}{3} \right)$ | $\frac{M_2(kg)}{R(m)} \bigvee V(m/min)$ $M_1(kg)$                                                                                   | $I = M_1 R^2 + \frac{1}{2} M_2 R^2$                                                                                                                                                                                                                                       |
| 4. Rectangle $ \frac{M(kg)}{X} \qquad \qquad \frac{Z}{X} \qquad \qquad \frac{Z}{B(m)} $ | $I_{x} = \frac{1}{12} M (b^{2} + c^{2})$ $I_{y} = \frac{1}{12} M (a^{2} + c^{2})$ $I_{z} = \frac{1}{12} M (a^{2} + b^{2})$                                                                              | 9. Parallel axis theorem  M(kg) Center axis lo Rotation axis                                                                        | I = I <sub>0</sub> + Mη <sup>2</sup> I <sub>0</sub> : Moment of inertia of any object about an axis through its center of mass  I: Moment of inertia about any axis parallel to the axis through its center of mass  η: Perpendicular distance between the above two axes |
| 5. General application                                                                  |                                                                                                                                                                                                         |                                                                                                                                     |                                                                                                                                                                                                                                                                           |
| M(kg) V(m/min) R(m) N(rpm)                                                              | $I = \frac{M}{4} \left( \frac{V}{\pi \times N} \right)^2 = MR^2$                                                                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                           |

## **Troubleshooting checksheet**

Check the following items in the case of trouble like abnormal noise, vibration, or malfunctions.

When it is not possible to resolve an abnormality even after verifying the corresponding checkpoint, obtain a "Reduction Gear Investigation Request Sheet" from the download page in our Website, fill in the necessary information, and contact our Customer Support Center at Tsu Plant.

[URL]: https://precision.nabtesco.com/en/download/



#### The trouble started immediately after installation of the reduction gear

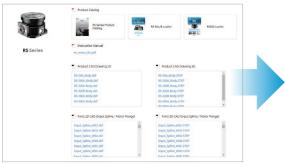
| Checked | Checkpoint                                                                                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|         | Make sure the equipment's drive section (the motor side or the reduction gear output surface side) is not interfering with another component. |
|         | Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load)                                          |
|         | Make sure the required number of bolts are tightened uniformly with the specified tightening torque.                                          |
|         | Make sure the reduction gear, motor, or your company's components are not installed at a slant.                                               |
|         | Make sure the specified amount of Nabtesco-specified lubricant has been added.                                                                |
|         | Make sure there are no problems with the motor's parameter settings.                                                                          |
|         | Make sure there are no components resonating in unity.                                                                                        |
|         | Make sure the input gear is appropriately installed on the motor.                                                                             |
|         | Make sure there is no damage to the surface of the input gear teeth.                                                                          |
|         | Make sure the input gear specifications (precision, number of teeth, module, shift coefficient, dimensions of each part) are correct.         |
|         | Make sure the flange and other components are designed and manufactured with the correct tolerances                                           |

#### The trouble started during operation

| Checked | Checkpoint                                                                                            |
|---------|-------------------------------------------------------------------------------------------------------|
|         | Make sure the equipment has not been in operation longer than the calculated service life.            |
|         | Make sure the surface temperature of the reduction gear is not higher than normal during operation.   |
|         | Make sure the operation conditions have not been changed.                                             |
|         | Make sure there are no loose or missing bolts.                                                        |
|         | Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load). |
|         | Make sure the equipment's drive section is not interfering with another component.                    |
|         | Make sure an oil leak is not causing a drop in the amount of lubricant.                               |
|         | Make sure there are no external contaminants in the gear, such as moisture or metal powder.           |
|         | Make sure no lubricant other than that specified is being used.                                       |

#### Introduction of Our Website

## **Precision Reduction Gear RV™ Promotion Site**


https://precision.nabtesco.com/en/ From a computer, please search us by company name. Nabtesco Precision Equipment Company Q



Contents \*Other contents are also available.

Various downloadable materials Members Only

Product catalogs, operation manuals, and 2D/3D CAD data are available for download.







Product catalogs

2D/3D CAD data

#### **Application Video**

Videos showing the mechanism and the operating principle of the precision reduction gear RV™, and application examples of products are now available.



Scan the QR code to view the YouTube channel of Precision Equipment Company.



#### **Support Site**

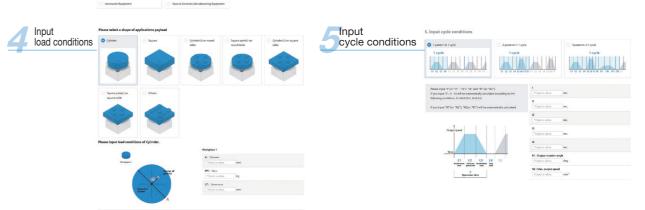
We deliver various materials such as a basic knowledge of reduction gears, the history of the precision reduction gear RV™, and example applications of each product.



Nabtesco Precision Reduction Gear Support Site



#### Product Selection Members Only


#### (Simple selection/detailed selection of positioner units/simple selection of robot travel shafts)

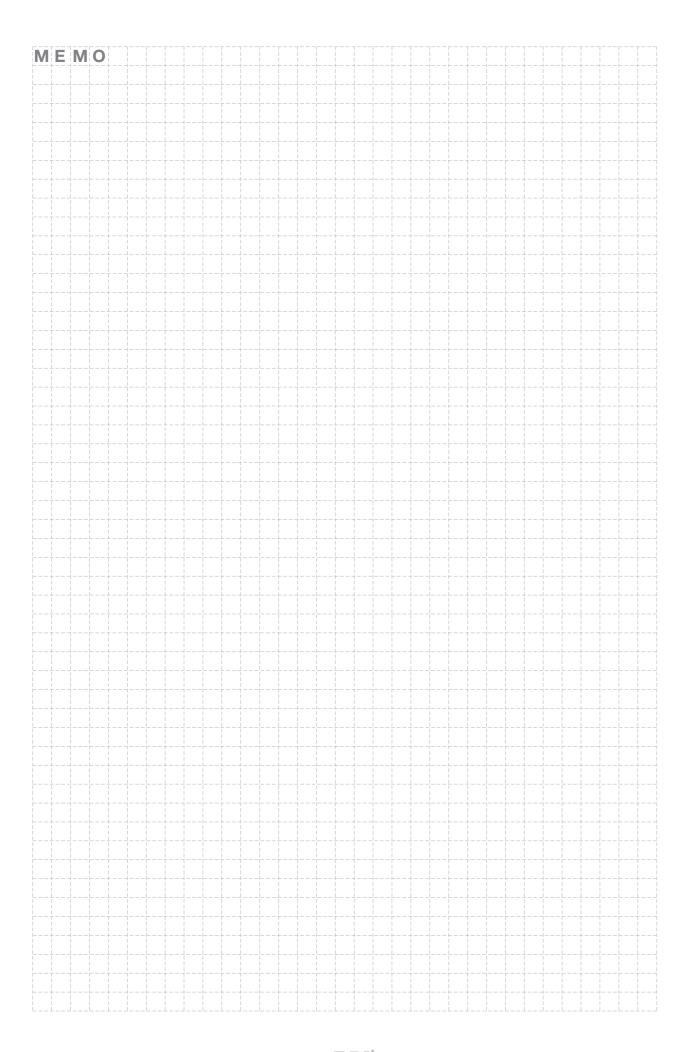
When selecting models and calculating service life, mechanisms, applications, load conditions, and more can be taken into account. The results can be downloaded as a reference calculation file and viewed from MyPage at any time.

<Examples of how to use selection tool (detailed selection)>










- Calculated result
- PDF output is possible Usable with inquiries as well
- Viewable from MyPage at any time



Reference calculation file





#### Warranty

- 1. In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco's design or manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective Product at its cost. The Warranty Period shall be from the delivery of the Product by Nabtesco or its distributor to you ("Customer") until the end of one (1) year thereafter, or the end of two thousand (2,000) hours from the initial operation of Customer's equipment incorporating the Product at end user's production line, whichever comes earlier.
- 2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product shall be limited to the repair or replacement set forth herein. OTHER THAN AS PROVIDED HEREIN, THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 3. The warranty obligation under the Section 1 above shall not apply if:
- a) the defect was caused due to the use of the Product deviated from the Specifications or the working conditions provided by Nabtesco;
- b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
- c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
- d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust, corrosive/volatile/inflammable gas, pressurized/depressurized air, under water/liquid or others except for those expressly stated in the Specifications);
- e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
- f) the defect was caused due to the equipment into which the Product was installed;
- g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
- h) the defect was due to any cause other than the design or manufacturing of the Product.
- 4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the initial Warranty Period of the defective Product subjected to such repair/replace.

Please contact us for more details.







**Europe and Africa** Nabtesco Precision Europe GmbH

Tiefenbroicher Weg 15, 40472 Düsseldorf, Germany TEL: +49-211-173790 FAX: +49-211-364677 E-MAIL: info@nabtesco.de www.nabtesco.de

North and South America Nabtesco Motion Control Inc.

23976 Freeway Park Drive, Farmington Hills, MI 48335, USA

TEL: +1-248-553-3020 FAX: +1-248-553-3070

E-MAIL: engineering@nabtescoprecision.com www.nabtescoprecision.com

China Shanghai Nabtesco Motion-equipment Co., Ltd.

Room 1706, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China

TEL: +86-21-3363-2200 FAX: +86-21-3363-2655 E-MAIL: info@nabtesco-motion.cn www.nabtesco-motion.cn

India Nabtesco India Private Limited

Site No.485/9, 14th Cross, Peenya Industrial Area, 4th Phase, Bangalore -560 058 Karnataka India

TEL: +91-80-4123-4901 FAX: +91-80-4123-4903 E-MAIL: Nti\_pn@nabtesco.co.in www.nabtesco.co.in

**Nabtesco Corporation** Asia and others

Nagoya Sales Office

4th Fl, Frontier Meieki Bldg., 2-17 Meieki 5-chome, Nakamura-ku, Nagoya 450-0002, Japan

TEL:+81-52-582-2981 FAX:+81-52-582-2987

**Customer Support Center** 

594 Icchoda, Katada-cho, Tsu, Mie 514-8533, Japan TEL: +81-59-237-4672 FAX: +81-59-237-4697

E-MAIL: P\_Information@nabtesco.com https://precision.nabtesco.com/ja/

- Nabtesco and RV are registered trademarks or trademarks of Nabtesco Corporation.
- Specifications are subject to change without notice.
- The PDF data of this catalog can be downloaded from the following website. https://precision.nabtesco.com/en/download/

- If any addition or modification is made to the published information, the PDF data may be updated before the printed catalog Due to this, please note that some contents of the PDF data may be changed or revised from those in this catalog
- Unauthorized reprinting, reproduction, copying, or translation of this catalog in whole or in part is strictly prohibited.
- © 2015 Nabtesco Corporation. All rights reserved



















